SUBSETS OF RECTIFIABLE CURVES IN BANACH SPACES II: UNIVERSAL ESTIMATES FOR ALMOST FLAT ARCS

MATTHEW BADGER AND SEAN MCCURDY

Abstract

We prove that in any Banach space the set of windows in which a rectifiable curve resembles two or more straight line segments is quantitatively small with constants that are independent of the curve, the dimension of the space, and the choice of norm. Together with Part I, this completes the proof of the necessary half of the Analyst's Traveling Salesman theorem with sharp exponent in uniformly convex spaces.

Contents

List of Figures 1

1. Introduction 2
2. Schul's martingale argument in a Banach space 8
3. Outline of the proof of the Main Theorem 14
4. Geometric preliminaries and coarse estimates 19
5. Necessary and sufficient cores 30
6. Proof of LemmalI 35
7. Proof of Lemma|II 37
Appendix A. Unions of overlapping balls in a metric space 45
Appendix B. Lipschitz projections onto lines in Banach spaces 46
Appendix C. Comments on Lemma 3.28 in [Schul 2007] 48
References 50
List of Figures
3.1 J-projection onto a line in ℓ_{1}^{2} 16
3.2 Tall arcs and wide arcs 17
4.1 Example of a radial, disconnected arc fragment 21
4.2 Separated subarcs (small scale geometry) 25
5.1 Topological argument 33
7.1 Separated subarcs (large scale geometry) 42
A. 1 Clusters of overlapping balls 46
C. 1 Example of an almost flat arc inside of the core of a Schul-type $\Delta_{2.1}$ ball 49

Date: December 28, 2022.
2010 Mathematics Subject Classification. Primary 28A75; Secondary 26A16, 46B20, 60G46.
Key words and phrases. rectifiable curves, Analyst's Traveling Salesman problem, Jones' β numbers, Banach spaces, Lipschitz projections, overlapping balls, Christ-David cubes, martingales.
M. Badger was partially supported by NSF DMS grants 1650546 and 2154047.

1. Introduction

1.1. Background. Given "snapshots" of a set E in a metric space \mathbb{X} at all locations and scales, the Analyst's Traveling Salesman Problem is to determine whether or not E is contained in a rectifiable curve, and if so, to estimate the length of the shortest such curve. Full solutions to the Analyst's TSP (characterizations of subsets of rectifiable curves) have been found in \mathbb{R}^{n} Jon90, Oki92], in arbitrary Carnot groups [i22], in Hilbert space Sch07c], and in certain fractal-like metric spaces DS17. For the related Measuretheorist's Traveling Salesman Problem and its solution in \mathbb{R}^{n} and also in Carnot groups, see BS17, Bad19, BLZ22]. Partial results on the Analyst's TSP in other metric spaces have been obtained by Hahlomaa Hah05, Hah08 and David and Schul DS21 and for higher-dimensional objects AS18, BNV19, Hyd22, Vil20]. Refined estimates on the length of the shortest Jordan curve containing a set in \mathbb{R}^{n} or Hilbert space have been given in [Bis22, Kra22]. In Part I [BM22] and in the present paper, we address the Analyst's TSP on a general Banach space.

Let \mathbb{X} be a (real) Banach space, let $E \subset \mathbb{X}$ be a nonempty set, and let $Q \subset \mathbb{X}$ be a set of finite, positive diameter. If $E \cap Q \neq \emptyset$, we define

$$
\begin{equation*}
\beta_{E}(Q)=\inf _{L} \sup _{x \in E \cap Q} \frac{\operatorname{dist}(x, L)}{\operatorname{diam} Q} \in[0,1], \tag{1.1}
\end{equation*}
$$

where the infimum ranges over all lines $L \subset \mathbb{X}$. If $E \cap Q=\emptyset$, then we assign $\beta_{E}(Q)=0$. These are a geometric variant of least squares errors introduced in Jon90 and are now called Jones' beta numbers. If $\beta_{E}(Q)=0$, then the portion of the set E inside of the "window" Q is contained in some line L; if $\beta_{E}(Q) \gtrsim 1$, then for each line L passing through Q, at least some part of $E \cap Q$ is far away from L. An easy, but important consequence of the definition is

$$
\begin{equation*}
\beta_{E}(R) \leq \frac{\operatorname{diam} Q}{\operatorname{diam} R} \beta_{F}(Q) \quad \text { for all } E \subset F \text { and } R \subset Q \tag{1.2}
\end{equation*}
$$

Thus, an estimate of flatness at one scale yields (a worse) estimate of flatness at a smaller scale. Because any rectifiable curve $\Gamma \subset \mathbb{X}$ admits tangents lines almost everywhere with respect to the 1 -dimensional Hausdorff measure \mathcal{H}^{1}, it is perhaps reasonable to expect that $\lim _{r \rightarrow 0} \beta_{\Gamma}(B(x, r))=0$ at \mathcal{H}^{1}-a.e. $x \in \Gamma$. Following [Jon90], which marks the start of quantitative geometric measure theory as its own subject, we are interested in making this qualitative statement more precise.

In Part I [BM22], we established universal sufficient conditions for a set in an arbitrary Banach space to be contained inside a rectifiable curve, as well as improved estimates on the length of the shortest curve containing a set in uniformly smooth spaces. The origin of this result is Jones's criterion Jon90 for the existence of a rectifiable curve passing through a given set in \mathbb{R}^{n}, which is usually stated using systems of dyadic cubes. However, because we work in infinite-dimensional settings, we prefer to use Schul's formulation Sch07c] in terms of multiresolution families. Recall that an ϵ-net for $E \subset \mathbb{X}$ is a maximal set $X \subset E$ such that $|x-y| \geq \epsilon$ for all distinct $x, y \in X$. A multiresolution family \mathscr{G} for
E with inflation factor $A_{\mathscr{G}}>1$ is a family $\left\{B\left(x, A_{\mathscr{G}} 2^{-k}\right): x \in X_{k}, k \in \mathbb{Z}\right\}$ of closed balls with centers in some nested family $\cdots \subset X_{-1} \subset X_{0} \subset X_{1} \subset \cdots$ of 2^{-k}-nets X_{k} for E. Analogously, if each set X_{k} is a 2^{-k}-separated set, but possibly one or more of the sets X_{k} are not 2^{-k}-nets, then we call \mathscr{G} a partial multiresolution family for E.

Theorem 1.1 ([Jon90, Sch07c, BM22]). Let \mathbb{X} be Banach space and let $1 \leq p \leq 2$. Suppose that
(i) \mathbb{X} is an arbitrary Banach space and $p=1$; or,
(ii) \mathbb{X} is a uniformly smooth Banach space of power type $1<p \leq 2$; or,
(iii) \mathbb{X} is a Hilbert space and $p=2$; or,
(iv) \mathbb{X} is a finite-dimensional Banach space and $p=2$.

If $E \subset \mathbb{X}, \mathscr{G}$ is a multiresolution family for E with inflation factor $A_{\mathscr{G}} \geq 240$, and

$$
\begin{equation*}
S_{E, p}(\mathscr{G}):=\operatorname{diam} E+\sum_{Q \in \mathscr{G}} \beta_{E}(Q)^{p} \operatorname{diam} Q<\infty \tag{1.3}
\end{equation*}
$$

then E is contained in a rectifiable curve $\Gamma \subset \mathbb{X}$ with $\mathcal{H}^{1}(\Gamma) \lesssim_{A_{\mathscr{G}}, \mathbb{X}} S_{E, p}(\mathscr{G})$. (When $p=1$, restrict the sum in the definition of $S_{E, 1}(\mathscr{G})$ to balls $Q \in \mathscr{G}$ with $\operatorname{diam} Q \lesssim \operatorname{diam} E$.)

Remark 1.2. In cases (i) and (iii), the implicit constant in Theorem 1.1 in the comparison $\mathcal{H}^{1}(\Gamma) \lesssim_{A_{\mathscr{G}}, \mathbb{X}} S_{E, p}(\mathscr{G})$ depends only on $A_{\mathscr{G}}$. In case (ii), the implicit constant depends only on $A_{\mathscr{G}}$ and the modulus of smoothness of \mathbb{X}. In case (iv), the implicit constant depends on $A_{\mathscr{G}}$, the dimension of \mathbb{X}, and the bi-Lipschitz constant of a chosen embedding $\mathbb{X} \hookrightarrow \ell_{2}^{\operatorname{dim} \mathbb{X}}$.

In the present paper, we complete the proof of the following theorem, which is dual to Theorem 1.1. Where the modulus of smoothness is the relevant characteristic of a space for sufficient conditions, the modulus of convexity of the space is the relevant characteristic for necessary conditions. The special cases $X=\mathbb{R}^{2}$ and $X=\mathbb{R}^{n}, n \geq 3$ of Theorem 1.3 are originally due to Jones [Jon90 and Okikiolu Oki92, respectively. When \mathbb{X} is an infinite-dimensional Hilbert space, the theorem was identified in Sch07c, but the proof in that paper has serious gaps (see [BM22, Remark 3.8] and Appendix C) and a complete proof seems to not have been written until now. (An alternative fix of some portions of the proof in Schul's paper is proposed by Krandel Kra22.)

Theorem 1.3. Let \mathbb{X} be a Banach space and let $2 \leq p<\infty$. Suppose that
(i) \mathbb{X} is a uniformly convex Banach space of power type $2 \leq p<\infty$; or,
(ii) \mathbb{X} is a Hilbert space and $p=2$; or,
(iii) \mathbb{X} is a finite-dimensional Banach space and $p=2$.

If $E \subset \mathbb{X}$ is contained in a rectifiable curve Γ and \mathscr{G} is any (partial) multiresolution family for E, then $S_{E, p}(\mathscr{G}) \lesssim_{A_{\mathscr{G}}, \mathbb{X}} \mathcal{H}^{1}(\Gamma)$.

Remark 1.4. Again, in case (ii), the implicit constant in the comparison $S_{E, p}(\mathscr{G}) \lesssim_{A_{\mathscr{G}}, \mathbb{X}}$ depends only on the inflation factor $A_{\mathscr{G}}$. In case (i), the implicit constant depends only on $A_{\mathscr{G}}$ and the modulus of convexity of \mathbb{X}. In case (iii), the implicit constant depends on $A_{\mathscr{G}}$, the dimension of \mathbb{X}, and the bi-Lipschitz constant of an embedding $\mathbb{X} \hookrightarrow \ell_{2}^{\operatorname{dim} \mathbb{X}}$.

Combining Theorems 1.1 and 1.3, we recover Schul's solution of the Analyst's TSP in Hilbert space [Sch07c]. For derivation of Jones's and Okikiolu's dyadic cube formulation of Corollary 1.5 in any finite-dimensional Banach space, see [BM22, §4].

Corollary 1.5. Let \mathbb{X} be any Hilbert space. A bounded set $E \subset \mathbb{X}$ is a subset of a rectifiable curve in \mathbb{X} if and only if

$$
\begin{equation*}
\sum_{Q \in \mathscr{G}} \beta_{E}(Q)^{2} \operatorname{diam} Q<\infty \tag{1.4}
\end{equation*}
$$

for some (for every) multiresolution family \mathscr{G} for E with inflation factor $A_{\mathscr{G}} \geq 240$. Furthermore, if (1.4) holds, then E is contained in some rectifiable curve Γ with extrinsic length $\mathcal{H}^{1}(\Gamma) \lesssim A_{\mathscr{G}} S_{E, 2}(\mathscr{G})$.

The solution of the Analyst's TSP in Hilbert space depends heavily on the Pythagorean theorem as well as invariance of distances under orthogonal transformation. These special features of Hilbert space are not available in a general Banach space. While Theorem 1.1 gives a sufficient test for a set to lie in a rectifiable curve and Theorem 1.3 provides us necessary conditions, a complete characterization of subsets of rectifiable curves in an infinite-dimensional non-Hilbert Banach space is still unknown. The following example and remarks show that a new idea is needed. See [Sch07b] for further discussion of the underlying challenges and [DS21] for recent partial progress.

Example 1.6. If $1<p<\infty$, then the Banach space $\mathbb{X}=\ell_{p}$ of real-valued sequences $x=\left(x_{i}\right)_{1}^{\infty}$ with $\|x\|_{p}=\left(\sum_{1}^{\infty}\left|x_{i}\right|^{p}\right)^{1 / p}$ is uniformly smooth of power type $\min \{p, 2\}$ and uniformly convex of power type $\max \{2, p\}$. Let $E \subset \ell_{p}$ be bounded. By Theorem 1.1,

$$
\begin{equation*}
\sum_{Q \in \mathscr{G}} \beta_{E}(Q)^{\min \{p, 2\}} \operatorname{diam} Q<\infty \Longrightarrow E \text { lies inside some rectifiable curve } \Gamma \text {. } \tag{1.5}
\end{equation*}
$$

By Theorem 1.3.

$$
\begin{equation*}
\sum_{Q \in \mathscr{G}} \beta_{E}(Q)^{\max \{2, p\}} \operatorname{diam} Q<\infty \Longleftarrow E \text { lies inside some rectifiable curve } \Gamma \text {. } \tag{1.6}
\end{equation*}
$$

Because $\min \{p, 2\}<\max \{2, p\}$ unless $p=2$, this means that there is a strict gap between Theorem 1.1 and 1.3 for infinite-dimensional non-Hilbert Banach spaces.

Remark 1.7. In BM22, §5], we construct examples that show that the exponents in (1.5) and (1.6) are sharp. For instance, for any $2 \leq p<\infty$, we build a curve Γ in ℓ_{p} with $\mathcal{H}_{\ell_{p}}^{1}(\Gamma)<\infty$ and $S_{E, p-\epsilon}(\mathscr{G})=\infty$ for all $\epsilon>0$.

Remark 1.8. Equivalence of norms on finite-dimensional spaces ensures that a curve is rectifiable independent of the choice of norm (although the length depends on the norm). By contrast, the infinite-dimensional ℓ_{p} spaces are distinguished by their rectifiable curves in the following sense. For each $1<p<\infty$, there exists a curve Γ in ℓ_{p} such that $\mathcal{H}_{\ell_{p}}^{1}(\Gamma)=\infty$ and $\mathcal{H}_{\ell_{p+\epsilon}}^{1}(\Gamma)<\infty$ for all $\epsilon>0$. See [BM22, Proposition 1.1].

The proof of Theorem 1.3 for uniformly convex Banach spaces started in [BM22, §3] follows the outline of the argument in [Sch07c], but with the correction noted in [BM22, Remark 3.24], which required weakening Schul's original definition of "almost flat arcs". More specifically, we proved Theorem 1.3 modulo verification of [BM22, Theorem 3.30], which is the Main Theorem of this paper. Roughly speaking, the main theorem is a quantitative strengthening of the statement that at \mathcal{H}^{1} almost every point, at sufficiently small scales, a rectifiable curve does not resemble a union of two or more line segments. By proving the main theorem, we shall complete the demonstration of Theorem 1.3 .

The estimates that we establish below are universal in so far as they are valid in any Banach space. Because of the general setting, we have very few tools at our disposal. Our primary tools are the triangle inequality, connectedness of arcs, and the existence of Lipschitz projections onto 1-dimensional subspaces (see Appendix B).
1.2. Almost flat arcs and statement of the Main Theorem. For the remainder of the paper fix a Banach space $(\mathbb{X},|\cdot|)$, a rectifiable curve Γ in \mathbb{X}, a (partial) multiresolution family \mathscr{H} for Γ with inflation factor $A_{\mathscr{H}}>1$ and centers in a family $\left(X_{k}\right)_{k \in \mathbb{Z}}$ of $2^{-k_{-}}$ separated sets for Γ, and a continuous parameterization $f:[0,1] \rightarrow \Gamma$. For the purpose of proving the Main Theorembelow, we do not need to (and shall not) place any restrictions on the modulus of continuity or multiplicity of f, but if so desired, one may assume as in Part I that f is Lipschitz continuous, $\# f^{-1}\{x\} \leq 2$ for \mathcal{H}^{1}-a.e. $x \in \Gamma$, and $f(0)=f(1)$ (see [AO17]).

Definition 1.9 (classification of arcs BM22]). An arc, $\tau=\left.f\right|_{[a, b]}$, of Γ is the restriction of f to some interval $[a, b] \subset[0,1]$. Given an $\operatorname{arc} \tau:[a, b] \rightarrow \Gamma$, define

$$
\begin{aligned}
\operatorname{Domain}(\tau) & =[a, b], \quad \operatorname{Start}(\tau)=\tau(a)=f(a), \quad \operatorname{End}(\tau)=\tau(b)=f(b), \\
\text { Image }(\tau) & =\tau([a, b])=f([a, b]) \quad \text { and } \quad \operatorname{Diam}(\tau)=\operatorname{diam} \operatorname{Image}(\tau)
\end{aligned}
$$

For any ball $Q \in \mathscr{H}$ and scaling factor $\lambda \geq 1$, let

$$
\Lambda(\lambda Q):=\left\{\left.f\right|_{[a, b]}: \begin{array}{c}
{[a, b] \text { is a connected component of } f^{-1}(\Gamma \cap 2 \lambda Q)} \tag{1.7}\\
\text { such that } \lambda Q \cap f([a, b]) \neq \emptyset
\end{array}\right\} .
$$

The elements in $\Lambda(\lambda Q)$ are arcs in $2 \lambda Q$ that touch λQ. Agree to write $\beta_{\Lambda(\lambda Q)}(2 \lambda Q)$ as shorthand for $\beta_{\cup\{\operatorname{Image}(\tau): \tau \in \Lambda(\lambda Q)\}}(2 \lambda Q)$.

An arc $\tau \in \Lambda(\lambda Q)$ is called $*$-almost flat if

$$
\begin{equation*}
\beta(\tau):=\beta_{\operatorname{lmage}(\tau)}(\operatorname{Image}(\tau))=\inf _{L} \sup _{z \in \operatorname{lmage}(\tau)} \frac{\operatorname{dist}(z, L)}{\operatorname{Diam}(\tau)} \leq 50 \epsilon_{2} \beta_{\Lambda(\lambda Q)}(2 \lambda Q) \tag{1.8}
\end{equation*}
$$

where L ranges over all lines in \mathbb{X} and $0<\epsilon_{2} \ll 1$ is a constant depending on at most the inflation factor $A_{\mathscr{H}}$ of \mathscr{H} and ϵ_{1} (see Definition 1.11). Denote the set of $*$-almost flat arcs in $\Lambda(\lambda Q)$ by $S^{*}(\lambda Q)$.

An arc $\tau \in \Lambda(\lambda Q)$ is called almost flat if $\beta(\tau) \leq \epsilon_{2} \beta_{\Gamma}(Q)$. Denote the set of almost flat arcs in $\Lambda(\lambda Q)$ by $S(\lambda Q)$. An arc $\tau \in \Lambda(\lambda Q) \backslash S(\lambda Q)$ is called dominant.

Remark 1.10. We do not require that arcs be 1-to-1. By 1.2 , every almost flat are is $*$-almost flat provided that $\lambda \leq 25$. The peculiar definition of $*$-almost flat arc, i.e. the constant 50 in (1.8), and the focus on scaling factors $\lambda \in\{1,5\}$ in arguments below are made in order to implement the proof of [BM22, Lemma 3.29]. However, these choices will play no direct role in the arguments in this paper.

Below, given an arc τ and window Q, we write $\beta_{\tau}(Q)$ as shorthand for $\beta_{\text {Image }(\tau)}(Q)$. Similarly, given a set S of arcs, we write $\beta_{S}(Q)=\beta_{\bigcup\{\operatorname{Image}(\tau): \tau \in S\}}(Q)$.

Definition 1.11 (\mathscr{B} balls). Let $0<\epsilon_{1} \ll 1$ be a constant depending on at most the inflation factor $A_{\mathscr{H}}$ of \mathscr{H}. Given $\lambda \geq 1$, let \mathscr{B}^{λ} denote the collection of all balls $Q \in \mathscr{H}$ such that
(i) $\beta_{\Gamma}(Q) \neq 0$ and $\Gamma \backslash 14 Q \neq \emptyset$;
(ii) if $\tau \in \Lambda(\lambda Q)$ and Image (τ) intersects the net ball $\left(1 / 3 A_{\mathscr{H}}\right) Q=B\left(x,(1 / 3) 2^{-k}\right)$ near the center of $Q=B\left(x, A_{\mathscr{H}} 2^{-k}\right)$, with $x \in X_{k}$, then $\tau \in S(\lambda Q)$, and
(iii) $\beta_{S^{*}(\lambda Q)}(2 \lambda Q)>\epsilon_{1} \beta_{\Lambda(\lambda Q)}(2 \lambda Q)$.

Assign $\mathscr{B}=\mathscr{B}^{1} \cup \mathscr{B}^{5}$.
Remark 1.12. In Part I, we take $\epsilon_{1}=1 / 126 A_{\mathscr{H}}$ to prove and use [BM22, Lemma 3.29]. The importance of the net balls is that they are uniformly separated in each generation. That is, if $k \in \mathbb{Z}, x_{1}, x_{2} \in X_{k}$ are distinct points, and $Q_{i}=B\left(x_{i}, A_{\mathscr{H}} 2^{-k}\right) \in \mathscr{H}$, then

$$
\begin{equation*}
\operatorname{gap}\left(\left(1 / 3 A_{\mathscr{H}}\right) Q_{1},\left(1 / 3 A_{\mathscr{H}}\right) Q_{2}\right) \geq(1 / 3) 2^{-k}>0 \tag{1.9}
\end{equation*}
$$

where for any nonempty sets $S, T \subset \mathbb{X}, \operatorname{gap}(S, T)=\inf _{s \in S, t \in T}|s-t|$ denotes the gap between S and T. (In harmonic analysis, the notation $\operatorname{dist}(S, T)$ may be more familiar.)

If ϵ_{2} is very small, then at the resolution of $2 \lambda Q$, almost flat and $*$-almost flat arcs look like line segments ${ }^{1}$ Roughly, the class \mathscr{B} consists of all balls in the multiresolution family \mathscr{H} such that $2 \lambda Q$ contains at least two $*$-almost flat arcs (with distinct images) and the union of the images of arcs in $S^{*}(\lambda Q)$ is as non-flat as the union of the images of all arcs in $\Lambda(\lambda Q)$. Our main theorem says that for any rectifiable curve in any Banach space, the collection \mathscr{B} of locations and scales with this behavior is rare relative to $\mathcal{H}^{1}(\Gamma)$.

Theorem 1.13 (Main Theorem). Assume that ϵ_{2} is sufficiently small depending only on $A_{\mathscr{H}}$ and $\epsilon_{1} ; \epsilon_{2}=2^{-55} \epsilon_{1} / A_{\mathscr{H}}$ will suffice. For all $q>0$,

$$
\begin{equation*}
\sum_{Q \in \mathscr{B}} \beta_{\Gamma}(Q)^{q} \operatorname{diam} Q \lesssim{ }_{q, A_{\mathscr{H}}, \epsilon_{1}} \mathcal{H}^{1}(\Gamma) \tag{1.10}
\end{equation*}
$$

where the implicit constant blows up as $q \downarrow 0$.
Remark 1.14. A consequence of the Main Theorem is that in order to prove Theorem 1.3 for a particular curve Γ, in a particular Banach space \mathbb{X}, and for a particular exponent p, it (essentially) suffices to prove $\sum_{Q \in \mathscr{A}} \beta_{\Gamma}(Q)^{p} \operatorname{diam} Q \lesssim_{p, A_{\mathscr{H}}} \mathcal{H}^{1}(\Gamma)$, where $Q \in \mathscr{A} \subset \mathscr{H}$ are balls whose net ball $\left(1 / 3 A_{\mathscr{H}}\right) Q$ is intersected by a dominant arc. (Besides \mathscr{A} and \mathscr{B},

[^0]there is also a class of \mathscr{C} balls; see [BM22, §3.3] for details.) In Part I, we do this for curves in uniformly convex Banach spaces of power type $2 \leq p<\infty$ and prove Theorem 1.3 assuming the Main Theorem ([BM22, Theorem 3.30]).

Remark 1.15. In [Sch07c], Schul gives a version of the Main Theorem in Hilbert space, but with some differences. In particular, almost flat $\operatorname{arcs} \tau=\left.f\right|_{[a, b]}$ in [Sch07c] satisfy the more stringent requirement

$$
\begin{equation*}
\tilde{\beta}(\tau)=\sup _{c \in[a, b]} \frac{\operatorname{dist}(f(c),[f(a), f(b)])}{\operatorname{diam} \operatorname{lmage}(\tau)} \leq \epsilon_{2} \beta_{\Gamma}(Q) . \tag{1.11}
\end{equation*}
$$

A geometric consequence is that $\tilde{\beta}$ almost flat arcs that pass near the center of Q are "diametrical" in the sense that diam $\operatorname{Image}(\tau) \cap Q \geq\left(1-O\left(\epsilon_{2}\right)\right)$ diam Q. By contrast an almost flat arc with our definition that passes near the center of Q may be "radial" in the sense that diam Image $(\tau) \cap Q \leq\left(1 / 2+O\left(\epsilon_{2}\right)\right) \operatorname{diam} Q$. The existence of radial arcs causes substantial difficulties in the proof of the main theorem; see Remark 3.5. For additional comments on the proof of the theorem in [Sch07c], see Appendix C.

Remark 1.16. R. Schul (personal communication) suggested an alternate approach to handling radial arcs. If one assumes f is Lipschitz, then 1.10 for the subset of all $Q \in \mathscr{B}$ that contain one or more radial arcs is subsumed by the Carelson-type estimates in Azzam and Schul's quantitative metric differentation theorem AS14. Such an approach entails passing between multiresolution families in the domain and image of f, which is not needed in the direct argument below. The techniques in this paper may be better suited to proving a converse to the Hölder Traveling Salesman theorem [BNV19].

We devote the remainder of the paper to the proof of the Main Theorem. The journey is somewhat long, but we try to make the first few sections as easy to read as possible. We hope that the reader who reaches the end may say that they have gained at least an incrementally better insight into the mysteries of Banach space geometry. Sections $2 \sqrt{7}$ are best read in the order presented. In $\$ 2$, we describe Schul's clever idea to prove 1.10 by constructing geometric martingales out of curve fragments Sch07c. We show how to modify the original argument to account for the possibility of "radial" arcs. An important quantity introduced is diam H_{Q}, the diameter of a "maximal arc fragment" in the "core" U_{Q} of a ball. In $\S 3$, we outline the proof of the main theorem, including a discussion of the underlying challenges and a plan to overcome them. Ultimately, we reduce the proof of the main theorem to two key estimates, Lemma 1 and Lemma III. Section 4 sketches the geometry of possible configurations of almost flat arcs that we encounter in later proofs. Section 5 takes a crucial step towards better estimates by identifying an auxiliary family of cores nearby a given arc fragment that possesses a sufficient amount of "extra length." A vital technical tool is Lemma 5.8, which is proved using a topological argument.

We prove the main estimates in several stages. First, in Lemma 6.1, we show that

$$
\begin{equation*}
\operatorname{diam} H_{Q} \leq 2 \mathcal{H}^{1}\left(\Gamma \cap R_{Q}\right)+1.37 \sum \operatorname{diam} H_{Q^{\prime}} \tag{1.12}
\end{equation*}
$$

where R_{Q} is a "remainder" set and the sum ranges over all "children" $U_{Q^{\prime}}$ of the core U_{Q}. While this is a substantial improvement of the coarse estimate (3.6), which holds with 2.01 instead of 1.37 , to prove the main theorem we need the estimate to hold with the coefficient of the sum strictly less than 1! In the end, by a case analysis and iterating the proof of 1.12), using (1.12) instead of (3.6), we obtain the key estimate with a coefficient less than 0.96. See $\S 6$ (proof of Lemma II) and $\S 7$ (proof of Lemma III) for details.
1.3. Acknowledgements. This paper would not exist without the solid foundations of its predecessors, especially the body of work by P. Jones, K. Okikiolu, and R. Schul.

Part I of this project began when M. Badger hosted S. McCurdy at UConn in Fall 2018. The extended visit was made possible by NSF DMS 1650546.

2. Schul's martingale argument in a Banach space

We describe Schul's martingale argument (see [Sch07c, §3.3]) for upper bounding sums of $\beta_{\Gamma}(Q)^{q} \operatorname{diam} Q$ over subfamilies of \mathscr{B}, where q is any positive exponent! In this context, martingale refers to a recursively defined sequence of geometric weights associated to a tree of "cores" of overlapping balls. We formalize this terminology below. Schul's method is robust and can be implemented in any Banach space.
2.1. Start of the proof: reduction to existence of weights. Recall that if $Q \in \mathscr{B}$, say $Q=B\left(x, A_{\mathscr{H}} 2^{-k}\right)$ for some $k \in \mathbb{Z}$ and $x \in X_{k}$, then there exists $\lambda=\lambda(Q) \in\{1,5\}$ such that every arc $\tau \in \Lambda(\lambda Q)$ that intersects the net ball $B\left(x,(1 / 3) 2^{-k}\right)$ is almost flat, $\beta(\tau) \leq \epsilon_{2} \beta_{\Gamma}(Q)$, and hence is $*$-almost flat, $\beta(\tau) \leq 50 \epsilon_{2} \beta_{\Lambda(\lambda Q)}(2 \lambda Q)$. Moreover, the set $S^{*}(\lambda Q)$ of $*$-almost flat arcs in $\Lambda(\lambda Q)$ satisfies $\beta_{S^{*}(\lambda Q)}(2 \lambda Q)>\epsilon_{1} \beta_{\Lambda(\lambda Q)}(2 \lambda Q)$.

Suppose that we have broken up \mathscr{B} into a finite number of (possibly overlapping) families $\mathscr{B}(1), \ldots, \mathscr{B}(N)$, where N is independent of \mathbb{X} and $\lambda(Q) \equiv \lambda \in\{1,5\}$ is uniform across all Q in any fixed family $\mathscr{B}(n)$. (The partition that we eventually use is described in $\$ 3$.) To prove the Main Theorem, in particular (1.10), it suffices to prove that for each $\mathscr{B}^{\prime}=\mathscr{B}(n)$ and $q>0$, we have

$$
\begin{equation*}
\sum_{Q \in \mathscr{B}^{\prime}} \beta_{S^{*}(\lambda Q)}(2 \lambda Q)^{q} \operatorname{diam} Q \lesssim_{q, A \mathscr{H}} \mathscr{H}^{1}(\Gamma) \tag{2.1}
\end{equation*}
$$

because $\beta_{\Gamma}(Q)^{q}=\beta_{\Lambda(\lambda Q)}(Q)^{q} \lesssim_{q} \beta_{\Lambda(\lambda Q)}(2 \lambda Q)^{q} \lesssim_{q, \epsilon_{1}} \beta_{S^{*}(\lambda Q)}(2 \lambda Q)^{q}$ for all $Q \in \mathscr{B}$.
We now fix a family $\mathscr{B}^{\prime}=\mathscr{B}(n)$ and describe a strategy to prove 2.1 for \mathscr{B}^{\prime}. For the remainder of the paper, we set

$$
\begin{equation*}
K:=100+\left\lceil\log _{2} A_{\mathscr{H}}\right\rceil \geq 100 \tag{2.2}
\end{equation*}
$$

The value of K is chosen according to certain geometric requirements below, but for now the reader may think of K as being some large positive integer that is independent of the family \mathscr{B}^{\prime}. For the duration of the paper, for all integers $M \geq 1$ and $0 \leq j \leq K M-1$, we let $\mathscr{G}^{M, j}$ denote the set of all $Q \in \mathscr{B}^{\prime}$ such that

- $Q=B\left(x, A_{\mathscr{H}} 2^{-k}\right)$ for some $k \equiv j(\bmod K M)$ and $x \in X_{k}$, and
- $2^{-M}<\beta_{S^{*}(\lambda Q)}(2 \lambda Q) \leq 2^{-(M-1)}$.

Each $Q \in \mathscr{B}^{\prime}$ belongs to precisely one of the families $\mathscr{G}^{M, j}$ for some integers $M \geq 1$ and $0 \leq j<K M-1$. We will prove that when ϵ_{2} is sufficiently small compared to $\epsilon_{1} / A_{\mathscr{H}}$,

$$
\begin{equation*}
\sum_{Q \in \mathscr{G} M, j} \operatorname{diam} Q \lesssim A_{\mathscr{H}} \mathcal{H}^{1}(\Gamma) \tag{2.3}
\end{equation*}
$$

for all M and j. (We only refer to ϵ_{1} two more times, once in (3.1) and once in the derivation of 4.2).) This suffices, because for any $q>0$,

$$
\sum_{Q \in \mathscr{B}^{\prime}} \beta_{S^{*}(\lambda Q)}(2 \lambda Q)^{q} \operatorname{diam} Q \leq \sum_{M=1}^{\infty} 2^{-(M-1) q} \sum_{j=0}^{K M-1} \sum_{Q \in \mathscr{G} M, j} \operatorname{diam} Q \lesssim \lesssim_{q, A_{\mathscr{C}}} \mathcal{H}^{1}(\Gamma)
$$

where in the last inequality, we used $\sum_{M=1}^{\infty} M 2^{-(M-1) q} \lesssim_{q} 1$ and $K \lesssim_{A_{\mathscr{H}}} 1$. That is, (2.3) for all M and j implies (2.1) holds for the family \mathscr{B}^{\prime}.

We now fix integers $M \geq 1$ and $0 \leq j_{1} \leq K M-1$ and write $\mathscr{G}=\mathscr{G}^{M, j_{1}}$. We make a further reduction. Suppose that for each ball $Q \in \mathscr{G}$ we possess a Borel measurable function $w_{Q}: \mathbb{X} \rightarrow[0, \infty]$ which satisfies two properties:

$$
\begin{gather*}
\int_{\Gamma} w_{Q} d \mathcal{H}^{1} \gtrsim A_{\mathscr{H}} \operatorname{diam} Q \quad \text { for all } Q \in \mathscr{G} ; \tag{2.4}\\
\sum_{Q \in \mathscr{G}} w_{Q}(x) \lesssim 1 \quad \text { at } \mathcal{H}^{1} \text {-a.e. } x \in \Gamma . \tag{2.5}
\end{gather*}
$$

Then

$$
\sum_{Q \in \mathscr{G}} \operatorname{diam} Q \lesssim_{A_{\mathscr{H}}} \sum_{Q \in \mathscr{G}} \int_{\Gamma} w_{Q} d \mathcal{H}^{1}=\int_{\Gamma} \sum_{Q \in \mathscr{G}} w_{Q} d \mathcal{H}^{1} \lesssim_{A_{\mathscr{H}}} \mathcal{H}^{1}(\Gamma) .
$$

That is, the existence of weights w_{Q} satisfying (2.4) and (2.5) imply (2.3). Our task is to construct the weights, assuming that ϵ_{2} is sufficiently small.
2.2. Cores and maximal almost flat arcs. Following [Sch07c], it will be convenient to introduce a nested family of "cores" $U_{Q}^{J, c}$, lying near the center of balls $Q \in \mathscr{H}$. Cores are formed by joining overlapping dilations of balls in \mathscr{H} from future generations, skipping by J generations at a time.

Definition 2.1 (Sch07c]). Let $Q \in \mathscr{H}$, say that $Q=B\left(x, A_{\mathscr{H}} 2^{-k}\right)$ for some $k \in \mathbb{Z}$ and $x \in X_{k}$. For any integer $J \geq 4$ and $0<c \leq 1 / 5$, we define the (J, c)-core $U_{Q}^{J, c}$ of Q inductively by setting $U_{Q, 0}^{J, c}:=B\left(x, c 2^{-k}\right)=\left(c / A_{\mathscr{H}}\right) Q$,

$$
U_{Q, i}^{J, c}:=U_{\substack{a, i-1 \\ y \in X_{k+J \text { J for some }}^{J, c} \cup \bigcup^{j \geq 1} \\ B\left(y, c 2^{-(k+J j)}\right) \cap U_{Q, i-1}^{J, c} \neq \emptyset}} B\left(y, c 2^{-(k+J j)}\right) \quad \text { for all } i \geq 1, \text { and } \quad U_{Q}^{J, c}:=\bigcup_{i=0}^{\infty} U_{Q, i}^{J, c}
$$

Cores are a variation on the Christ-David "dyadic cubes" in a doubling metric space. Although an infinite-dimensional Banach space is not a doubling metric space, we note that the nets X_{k} are finite because Γ is compact. For a streamlined construction of metric cubes that starts with any nested family of locally finite nets, see [KRS12].

Lemma 2.2 (properties of cores, cf. [Sch07c, Lemma 3.19]). Given $J \geq 4,0<c \leq 1 / 5$, and $0 \leq j \leq J-1$, let \mathscr{U} be the family of cores defined by

$$
\mathscr{U}=\left\{U_{Q}^{J, c}: Q=B\left(x, A_{\mathscr{H}} 2^{-k}\right) \text { for some } x \in X_{k} \text { and } k \equiv j(\bmod J)\right\} .
$$

If $Q, R \in \mathscr{H}$ with $Q=B\left(x, A_{\mathscr{H}} 2^{-k}\right)$ and $R=B\left(y, A_{\mathscr{H}} 2^{-m}\right)$ for some $k, m \equiv j(\bmod J)$, $x \in X_{k}$, and $y \in X_{m}$, then the cores $U_{Q}^{J, c}$ and $U_{R}^{J, c}$ belong to the family \mathscr{U} and satisfy:
(i) Shape: $B\left(x, c 2^{-k}\right) \subset U_{Q}^{J, c} \subset B\left(x,\left(1+3 / 2^{J}\right) c 2^{-k}\right) \subset B\left(x,(1 / 4) 2^{-k}\right)$.
(ii) Separation within levels: If $k=m$ and $x \neq y$, then $\operatorname{gap}\left(U_{Q}^{J, c}, U_{R}^{J, c}\right) \geq(1 / 2) 2^{-k}$.
(iii) Tree structure: If $m \geq k$ and $U_{Q}^{J, c} \cap U_{R}^{J, c} \neq \emptyset$, then $U_{R}^{J, c} \subset U_{Q}^{J, c}$.

Proof. For (i), given $Q=B\left(x, A_{\mathscr{H}} 2^{-k}\right)$, the first containment is immediate, because $B\left(x, c 2^{-k}\right)=U_{Q, 0}^{J, c} \subset U_{Q}^{J, c}$. For the second containment, $U_{Q}^{J, c} \subset B\left(x,\left(1+3 / 2^{J}\right) c 2^{-k}\right)$, apply Lemma A.1 with parameters $\xi=2^{J}$ and $r_{0}=c 2^{-k}$ and balls $B\left(y, c 2^{-(k+J j)}\right)$ appearing in the definition of $U_{Q}^{J, c}$ assigned to level j. The reader should check that the hypotheses of Lemma A.1 are satisfied, but here are the essential points: With $J \geq 4$, the parameter $\xi \geq$ $16>6$. The chain hypothesis is satisfied by the construction of the cores. The separation hypothesis is satisfied, because the centers of balls in level j are $2^{-(k+J j)}$ separated and $(1-2 c) \geq 3 c$. The final containment in (i) holds, since $\left(1+3 / 2^{J}\right) c \leq 19 / 80<1 / 4$ when $J \geq 4$ and $c \leq 1 / 5$. Property (ii) holds by property (i) and fact that $|x-y| \geq 2^{-k}$ when $x, y \in X_{k}$ are distinct. When $m=k$, property (iii) is immediate from property (ii). Finally, when $m>k$, property (iii) follows from the construction. Indeed, $U_{Q}^{J, c} \cap U_{R}^{J, c} \neq \emptyset$ only if $U_{Q, i}^{J, c} \cap U_{R, j}^{J, c} \neq \emptyset$ for some i, j, so $U_{R, j+l}^{J, c} \subset U_{Q, i+j+1+l}^{J, c}$ for all $l \geq 0$, since $m>k$.
Definition 2.3. For all $Q \in \mathscr{H}$ (in particular, for $Q \in \mathscr{G}$), let U_{Q} denote the (J, c)-core $U_{Q}^{J, c}$ with parameters $J=K M$ and $c=2^{-12}$, with K as in (2.2), and let Q_{*} denote $U_{Q, 0}^{J, c}$.
Remark 2.4. A core U_{Q} looks like the ball Q_{*}, except that it may have "tiny bubbles" pushing outward near the boundary ∂Q_{*} of the ball. Cores are not necessarily convex.
Remark 2.5. If $Q=B\left(x, A_{\mathscr{H}} 2^{-k}\right) \in \mathscr{H}$ for some $k \in \mathbb{Z}$ and $x \in X_{k}$, then

$$
\begin{equation*}
Q_{*}=B\left(x, 2^{-12} 2^{-k}\right) \subset U_{Q} \subset 1.00001 Q_{*} \tag{2.6}
\end{equation*}
$$

by Lemma 2.2, since $1+3 / 2^{K M} \leq 1+3 / 2^{100}<1.00001$. (Fifth decimal place precision is chosen to facilitate select estimates in $\S \S 3.7$.) If $Q \in \mathscr{G}$ and $Q^{\prime}=B\left(y, A_{\mathscr{C}} 2^{-m}\right) \in \mathscr{G}$ for some $m \equiv k(\bmod K M)$ with $m>k$, then

$$
\begin{equation*}
\operatorname{diam} 2 \lambda Q^{\prime} \leq 20 A_{\mathscr{H}} 2^{-m} \leq 32 A_{\mathscr{H}} 2^{-K M} 2^{-k} \leq 2^{-84} \operatorname{diam} Q_{*} \tag{2.7}
\end{equation*}
$$

since $2^{-K M} \leq 2^{-100} A_{\mathscr{H}}^{-1}, 32 A_{\mathscr{H}} 2^{-K M} \leq 2^{-95}$, and diam $Q_{*}=2^{-11} 2^{-k}$. In particular,

$$
\begin{equation*}
2 \lambda Q^{\prime} \cap 0.99999 Q_{*} \neq \emptyset \Longrightarrow 2 \lambda Q^{\prime} \subset Q_{*} \subset U_{Q} \tag{2.8}
\end{equation*}
$$

Remark 2.6. The core U_{Q} of a ball $Q \in \mathscr{H}$ is much smaller than the net ball $\left(1 / 3 A_{\mathscr{H}}\right) Q$: $2^{10} U_{Q} \subset\left(1 / 3 A_{\mathscr{H}}\right) Q$, where dilations are relative to the center of Q. When $Q^{\prime} \in \mathscr{H} \backslash\{Q\}$ and $\operatorname{diam} Q^{\prime}=\operatorname{diam} Q$, Lemma 2.2(ii) implies $\operatorname{gap}\left(U_{Q}, U_{Q^{\prime}}\right) \geq 2^{10} \operatorname{diam} Q_{*} \geq 2^{9} \operatorname{diam} U_{Q}$.

Remark 2.7 (tree structure). By Lemma 2.2, we may view \mathscr{G} as a forest of trees ordered by inclusion of the cores $\left\{U_{Q}: Q \in \mathscr{G}\right\}$. That is, we declare $P \in \mathscr{G}$ to be the parent of $Q \in \mathscr{G}$ if and only if P is the unique element such that $U_{Q} \subsetneq U_{P}$ and $U_{Q} \subset U_{R} \subset U_{P}$ for some $R \in \mathscr{G}$ implies $R \in\{P, Q\}$. Note that

$$
\begin{equation*}
\sup _{Q \in \mathscr{B}} \operatorname{diam} Q \leq(1 / 14) \operatorname{diam} \Gamma<\infty, \tag{2.9}
\end{equation*}
$$

since $\Gamma \backslash 14 Q \neq \emptyset$ for all $Q \in \mathscr{B}$ and Γ is a rectifiable curve. Hence every element of \mathscr{G} sits below a maximal element in \mathscr{G}, i.e. a ball without a parent. Extending the metaphor, we say that Q is a child of P if P is the parent of Q. We let Child (P) denote the set of all $Q \in \mathscr{G}$ such that Q is a child of P. For each ball $P \in \mathscr{G}$, the set Child (P) may be empty, nonempty and finite, or countably infinite. We also view $\left\{U_{Q}: Q \in \mathscr{G}\right\}$ as a tree ordered by inclusion and call $U_{Q^{\prime}}$ a child of U_{Q} if and only if $Q^{\prime} \in \operatorname{Child}(Q)$. A child is a 1 st generation descendent, a child of a child is a 2nd generation descendent, etc.

We now diverge slightly from Sch07c and introduce (possibly disconnected) fragments of $*$-almost flat arcs on the image side of f. We also define a class of closed, connected subsets of fragments called subarcs.

Definition 2.8 (fragments of $*$-almost flat arcs). For each $Q \in \mathscr{G}$ and nonempty set $W \subset 2 \lambda Q$, with $\lambda \in\{1,5\}$ determined by \mathscr{G}, let $\Gamma_{W}^{*}=\left\{\operatorname{lmage}(\tau) \cap W: \tau \in S^{*}(\lambda Q)\right\} \backslash\{\emptyset\}$.

Definition 2.9 (subarcs). Let $T^{\prime} \in \Gamma_{W}^{*}$, say $T^{\prime}=\operatorname{Image}(\tau) \cap W$ for some $\operatorname{arc} \tau \in S^{*}(\lambda Q)$. We say that $T \subset T^{\prime}$ is a subarc of T^{\prime} if $T=\tau(I)=f(I)$ for some non-degenerate interval $I=[a, b] \subset \operatorname{Domain}(\tau)$; we say that the presentation $T=f(I)$ is efficient if, in addition, $\operatorname{diam} T=|f(a)-f(b)|$.

Remark 2.10. A subarc T of an arc fragment $T^{\prime} \in \Gamma_{W}^{*}$ may have several presentations, that is to say, we may have $T=f(I)$ and $T=f(J)$ for some intervals $I \neq J$. It is possible that the presentation $T=f(I)$ is efficient, but the presentation $T=f(J)$ is not efficient. This will not hamper the arguments below so long as we recall that the term "efficient" always refers to a particular choice of presentation of T.

Remark 2.11 (choosing maximal arc fragments). For any $Q \in \mathscr{G}$, say $Q=B\left(x, A_{\mathscr{H}} 2^{-k}\right)$ for some $k \in \mathbb{Z}$ and $x \in X_{k}$, the set $\Gamma_{U_{Q}}^{*}$ of arc fragments is nonempty, since the core U_{Q} is contained in the net ball $B\left(x,(1 / 3) 2^{-k}\right)$ and $x \in U_{Q}$. In fact, for every set $T^{\prime} \in \Gamma_{U_{Q}}^{*}$, there exists an almost flat arc $\tau \in S(\lambda Q)$ such that $T^{\prime}=\operatorname{Image}(\tau) \cap U_{Q}$, since $Q \in \mathscr{G}$ and $\mathscr{G} \subset \mathscr{B}^{\lambda}$ (see Definition 1.11).

Among all sets in $\Gamma_{U_{Q}}^{*}$, choose $H_{Q} \in \Gamma_{U_{Q}}^{*}$ such that

$$
\begin{align*}
& H_{Q} \cap(1 / 4) Q_{*} \neq \emptyset \quad \text { and } \\
& \operatorname{diam} H_{Q} \geq \operatorname{diam} T^{\prime} \quad \text { for all } T^{\prime} \in \Gamma_{U_{Q}}^{*} \text { such that } T^{\prime} \cap(1 / 4) Q_{*} \neq \emptyset \tag{2.10}
\end{align*}
$$

That is, let H_{Q} have maximal diameter among all fragments in U_{Q} of almost flat arcs that intersect $(1 / 4) Q_{*}$. Let $\eta_{Q} \in S(\lambda Q)$ denote any arc such that $H_{Q}=\operatorname{Image}\left(\eta_{Q}\right) \cap U_{Q}$.

Existence of H_{Q} is immediate, as $\Gamma_{U_{Q}}^{*}$ is a nonempty finite set and at least one fragment in $\Gamma_{U_{Q}}^{*}$ passes through the center of $(1 / 4) Q_{*}$. If there are several candidates, pick one in an arbitrary fashion. In principle, H_{Q} may have several connected components; e.g. even if η_{Q} traces a line segment, the core U_{Q} need not be a convex set. Nevertheless, H_{Q} always contains an efficient subarc G_{Q} with diameter nearly equal to that of H_{Q}; see 3.7 below. By comparison with an $\operatorname{arc} \tau \in S(\lambda Q)$ with $x \in \operatorname{Image}(\tau)$ and (2.6),

$$
\begin{equation*}
0.5 \operatorname{diam} Q_{*} \leq \operatorname{diam} H_{Q} \leq 1.00001 \operatorname{diam} Q_{*}<3 \mathcal{H}^{1}\left(\Gamma \cap U_{Q}\right) \tag{2.11}
\end{equation*}
$$

where the diameter of H_{Q} is closer to the lower bound if H_{Q} is "radial" and closer to the upper bound if H_{Q} is "diametrical". (The constant 3 is overkill.) Alternatively,

$$
\begin{equation*}
0.49999 \operatorname{diam} U_{Q} \leq \operatorname{diam} H_{Q} \leq \operatorname{diam} U_{Q} \leq 2.00002 \operatorname{diam} H_{Q} \tag{2.12}
\end{equation*}
$$

Below, we use diam H_{Q} to the play the role that $\operatorname{diam} U_{Q}$ had in [Sch07c].
2.3. Martingale construction. In probability theory [Dur19, Chapter 4], a martingale defined with respect to an increasing sequence $\left(\mathcal{F}_{k}\right)_{k \geq 0}$ of σ-algebras is any sequence of real-valued random variables $\left(Y_{k}\right)_{k \geq 0}$ such that each Y_{k} is \mathcal{F}_{k} measurable and has finite expectation, and moreover, the conditional expectations $\mathbb{E}\left(Y_{k+1} \mid \mathcal{F}_{k}\right)=Y_{k}$ for all k. The martingale convergence theorem asserts that if $\left(Y_{k}\right)_{k \geq 0}$ is a martingale and $Y_{k} \geq 0$ for all k, then Y_{k} converges to some random variable Y almost surely. We will use martingales to construct weights satisfying (2.4) and (2.5), where the background "probability" is the finite measure $\ell=\mathcal{H}^{1}\llcorner\Gamma$.

Let $P \in \mathscr{G}$ be a fixed ball. For each $k \geq 0$, let \mathcal{F}_{k} denote the σ-algebra generated by the cores U_{Q}, where Q is a descendent of P in \mathscr{G} of generation at most k (including P). Thus, $\mathcal{F}_{0}=\left\{\emptyset, U_{P}, \mathbb{X} \backslash U_{P}, \mathbb{X}\right\}$ is the σ-algebra generated by $\left\{U_{P}\right\}, \mathcal{F}_{1}$ is the σ-algebra generated by $\left\{U_{P}\right\} \cup\left\{U_{Q}: Q \in \operatorname{Child}(P)\right\}$, etc. We remark that $\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \cdots \subset \mathcal{B}_{\mathbb{X}}$, the Borel σ-algebra. We build $\left(Y_{k}\right)_{k \geq 0}$ inductively. First, assign Y_{0} to be the \mathcal{F}_{0} simple function

$$
\begin{equation*}
Y_{0}=\frac{\operatorname{diam} H_{P}}{\ell\left(U_{P}\right)} \chi_{U_{P}} \tag{2.13}
\end{equation*}
$$

where H_{P} denotes the maximal arc fragment chosen in Remark 2.11. Note that Y_{0} is \mathcal{F}_{0} measurable and $\int Y_{0} d \ell=\operatorname{diam} H_{P}$. To continue, suppose that $Q \in \mathscr{G}$ with $U_{Q} \subset U_{P}$. Let $k \geq 0$ denote the unique integer such that Q is a descendent of P of generation k, i.e. $k=0$ if $Q=P, k=1$ if $Q \in \operatorname{Child}(P)$, etc. We will define $\left.Y_{k+1}\right|_{U_{Q}}$ to take constant values on elements of \mathcal{F}_{k+1} contained in U_{Q}. If Child $(Q)=\emptyset$, then Q is terminal in \mathscr{G} and we simply set $\left.Y_{k+i}\right|_{U_{Q}}=\left.Y_{k}\right|_{U_{Q}}$ for all $i \geq 1$. Otherwise, Q has at least one and possibly \aleph_{0} many children in \mathscr{G}; let Q^{1}, Q^{2}, \ldots be an enumeration of Child (Q). We remark that the cores $U_{Q^{i}}$ of children of Q are pairwise disjoint. Now, define the remainder R_{Q},

$$
\begin{equation*}
R_{Q}:=U_{Q} \backslash \bigcup_{i} U_{Q^{i}} \tag{2.14}
\end{equation*}
$$

and define the auxiliary quantity s_{Q},

$$
\begin{equation*}
s_{Q}:=101 \ell\left(R_{Q}\right)+\sum_{i} \operatorname{diam} H_{Q^{i}} \tag{2.15}
\end{equation*}
$$

Observe that $s_{Q} \leq 101 \ell\left(U_{Q}\right)<\infty$ by (2.11) and countable additivity of measures. Assign $\left.Y_{k+1}\right|_{U_{Q}}$ to be the function

$$
\begin{equation*}
\left.Y_{k+1}\right|_{U_{Q}}=\left(\frac{101}{s_{Q}} \chi_{R_{Q}}+\sum_{i} \frac{\operatorname{diam} H_{Q^{i}}}{\ell\left(U_{Q^{i}}\right) s_{Q}} \chi_{Q^{i}}\right) \int_{U_{Q}} Y_{k} d \ell ; \tag{2.16}
\end{equation*}
$$

also assign $\left.Y_{k+i}\right|_{R_{Q}}=\left.Y_{k+1}\right|_{R_{Q}}$ for all $i \geq 2$. Then $\left.Y_{k+1}\right|_{U_{Q}}$ is \mathcal{F}_{k+1} measurable and $\int_{U_{Q}} Y_{k+1} d \ell=\int_{U_{Q}} Y_{k} d \ell$. As U_{Q} is an atom in the σ-algebra \mathcal{F}_{k}, the equality of the integrals ensures that $\mathbb{E}\left(Y_{k+1} \mid \mathcal{F}_{k}\right)=Y_{k}$ on U_{Q}. Repeating this construction on each Q that sits k levels below P in \mathscr{G} concludes the description of Y_{k+1} given Y_{k}. We have verified that Y_{k+1} is \mathcal{F}_{k+1} measurable and $\mathbb{E}\left(Y_{k+1} \mid \mathcal{F}_{k}\right)=Y_{k}$. Furthermore, the function Y_{k+1} has finite expectation, since $\int Y_{k+1} d \ell=\int Y_{k} d \ell=\cdots=\int Y_{0} d \ell=\operatorname{diam} H_{P}<\infty$. Therefore, $\left(Y_{k}\right)_{k \geq 0}$ is a martingale relative to $\left(\mathcal{F}_{k}\right)_{k \geq 0}$. By the martingale convergence theorem, $\left(Y_{k}\right)_{k \geq 0}$ converges almost surely. Thus, we may define the weight w_{P} to be any non-negative Borel measurable function such that $w_{P}=\lim _{k \rightarrow \infty} Y_{k} \ell$-a.e.

The following observation is the key to unlocking (2.4) and (2.5).
Lemma 2.12 (cf. Sch07c, Lemma 3.25, Steps 2-3]). Suppose there is a universal constant $0<q<1$ such that $\operatorname{diam} H_{Q} \leq q s_{Q}$ for all $Q \in \mathscr{G}$. Then (2.4) and (2.5) hold for \mathscr{G}.

Proof. Suppose that $Q_{0}=P, Q_{1} \in \operatorname{Child}\left(Q_{0}\right), \ldots, Q_{k} \in \operatorname{Child}\left(Q_{k-1}\right)$ is a finite branch of \mathscr{G} below P. Then, for all $x \in U_{Q_{k}}$,

$$
\begin{aligned}
Y_{k}(x) & =\frac{\operatorname{diam} H_{Q_{k}}}{\ell\left(U_{Q_{k}}\right) s_{Q_{k-1}}} \int_{U_{Q_{k}}} Y_{k-1} d \ell=\frac{\operatorname{diam} H_{Q_{k}}}{\ell\left(U_{Q_{k}}\right) s_{Q_{k-1}}} \frac{\operatorname{diam} H_{Q_{k-1}}}{s_{Q_{k-2}}} \int_{U_{Q_{k-1}}} Y_{k-2} d \ell \\
& =\cdots=\frac{\operatorname{diam} H_{Q_{k}}}{\ell\left(U_{Q_{k}}\right) s_{Q_{k-1}}} \frac{\operatorname{diam} H_{Q_{k-1}}}{s_{Q_{k-2}}} \cdots \frac{\operatorname{diam} H_{Q_{1}}}{s_{P}} \int_{U_{P}} \frac{\operatorname{diam} H_{P}}{\ell\left(U_{P}\right)} d \ell \\
& \leq q^{k} \frac{\operatorname{diam} H_{Q_{k}}}{\ell\left(U_{Q_{k}}\right)}<3 q^{k}
\end{aligned}
$$

by the hypothesis of the lemma and (2.11). Similarly, for all $x \in R_{Q_{k}}$,

$$
Y_{k+i}(x)=Y_{k+1}(x)=\frac{101}{s_{Q_{k}}} \int_{U_{Q_{k}}} Y_{k} d \ell \leq 101 q^{k+1} \quad \text { for all } i \geq 2 .
$$

Now, every point $x \in U_{P}$ either belongs to some R_{Q} and $Y_{k}(x)$ is eventually constant, or x is contained in an infinite branch of \mathscr{G} and $Y_{k}(x) \rightarrow 0$. Hence

$$
\begin{array}{cl}
Y_{k}(x) \leq 101 & \text { for all } x \in \mathbb{X} \text { and } k \geq 0, \text { and } \\
w_{P}(x) \leq 101 q^{k} & \text { whenever } x \text { belongs to a branch } U_{Q_{k}} \subset U_{Q_{k-1}} \subset \cdots \subset U_{P} \tag{2.17}
\end{array}
$$

Because $Y_{k} \rightarrow w_{P} \ell$-a.e. and Y_{k} is uniformly bounded, $Y_{k} \rightarrow w_{P}$ in $L^{1}(\ell)$ by Lebesgue's dominated convergence theorem. Thus,

$$
\int_{\Gamma} w_{P} d \mathcal{H}^{1}=\int w_{P} d \ell=\lim _{k \rightarrow \infty} \int Y_{k} d \ell=\operatorname{diam} H_{P} \gtrsim_{A_{\mathscr{H}}} \operatorname{diam} P
$$

by (2.11). That is, (2.4) holds.

Finally, if some ball $Q_{0} \in \mathscr{G}$ is maximal in \mathscr{G} (i.e. Q_{0} has no parent in \mathscr{G}) and for some branch $Q_{1} \in \operatorname{Child}\left(Q_{0}\right), \ldots, Q_{k} \in \operatorname{Child}\left(Q_{k-1}\right)$ of \mathscr{G} below Q_{0}, a point $x \in U_{Q_{k}}$, then

$$
w_{Q_{0}}(x)+w_{Q_{1}}(x)+\cdots+w_{Q_{k}}(x) \leq 101 q^{k}+101 q^{k-1}+\cdots+101 \leq \frac{101}{1-q}
$$

by (2.17). Since the upper bound is independent of the length of the branch and q is a universal constant, this yields (2.5).
2.4. Summary. All things considered, we have shown that in order to prove (2.1) for a given family $\mathscr{B}^{\prime} \subset \mathscr{B}$, it suffices to verify the hypothesis of Lemma 2.12 for each subfamily $\mathscr{G}=\mathscr{G}^{M, j_{1}}$ associated to $\mathscr{B}^{\prime} .($ Look between (2.2) and (2.3) for the definition of \mathscr{G}.

3. Outline of the proof of the Main Theorem

Recall that $\mathscr{B}=\mathscr{B}^{1} \cup \mathscr{B}^{5}$. Some balls in \mathscr{B} may belong to both families, but this will not concern us. For the remainder of the paper, we let $\lambda \in\{1,5\}$ be fixed and focus on establishing (2.1) for $\mathscr{B}^{\prime}=\mathscr{B}^{\lambda}$. Throughout the sequel, we demand that

$$
\begin{equation*}
\epsilon_{2} \leq 2^{-55} \epsilon_{1} / A_{\mathscr{H}}, \tag{3.1}
\end{equation*}
$$

which ensures that at appropriate resolutions, every point in the image of an almost flat arc lies close to some line segment. Furthermore, this choice guarantees that any individual $*$-almost flat arc $\tau \in S^{*}(\lambda Q)$ is much flatter than the union of the images of all $*$-almost flat arcs in $S^{*}(\lambda Q)$. See $\$ 4.1$ for details. We do not optimize ϵ_{2}.

Remark 3.1. If desired, one can replace the scaling factor $\lambda \in\{1,5\}$ in the arguments below with an arbitrary scaling factor $\lambda \geq 1$. However, if λ is very large, then one must adjust the values of several parameters, including ϵ_{2} in the definition of almost flat arcs, and J and c in the definition of the cores $U_{Q}=U_{Q}^{J, c}$. We restrict to $\lambda \in\{1,5\}$, because these are the values needed for the proof of Theorem 1.3 presented in [BM22].

Later on, we would like to assume that every almost flat $\operatorname{arc} \tau \in S(\lambda Q)$ that passes through the net ball for Q has endpoints on the boundary of $2 \lambda Q$. Exceptions may occur if an endpoint of the full parameterization lies on the arc, but for each endpoint this happens at most a finite number of times per scale. Checking (2.1) for such balls is easy.

Lemma 3.2. Let $\mathscr{B}_{0}^{\lambda}$ denote the set of all $Q \in \mathscr{B}^{\lambda}$ for which there exists an arc $\tau \in S(\lambda Q)$ such that Image (τ) contains $f(0)$ or $f(1)$ and Image $(\tau) \cap\left(1 / 3 A_{\mathscr{H}}\right) Q \neq \emptyset$. For all $q>0$,

$$
\begin{equation*}
\sum_{Q \in \mathscr{B}_{0}^{\lambda}} \beta_{S^{*}(\lambda Q)}(2 \lambda Q)^{q} \operatorname{diam} Q \leq \sum_{Q \in \mathscr{B}_{0}^{\lambda}} \operatorname{diam} Q \lesssim A_{\mathscr{C}} \mathcal{H}^{1}(\Gamma) \tag{3.2}
\end{equation*}
$$

Proof. Fix any $z \in \mathbb{X}$ (e.g. $z=f(0), f(1))$. For the duration of the proof, let $\mathscr{B}_{z}^{\lambda}$ denote the set of all $Q \in \mathscr{B}^{\lambda}$ for which there exists an arc $\tau \in S(\lambda Q)$ such that Image (τ) contains z and intersects the net ball $\left(1 / 3 A_{\mathscr{H}}\right) Q$. Choose $k_{0} \in \mathbb{Z}$ so that $A_{\mathscr{H}} 2^{-k_{0}}$ is the largest radius of a ball in $\mathscr{B}_{z}^{\lambda}$. For each $k \geq k_{0}$, let \mathscr{E}_{k} denote all balls $Q \in \mathscr{B}_{z}^{\lambda}$ of radius $A_{\mathscr{H}} 2^{-k}$. Choose $v_{Q} \in \operatorname{Image}(\tau) \cap\left(1 / 3 A_{\mathscr{H}}\right) Q$ for each $Q \in \mathscr{E}_{k}$. By (1.9), 4.1), Lemma B.4, and

Lemma B.5, the set $\left\{v_{Q}: Q \in \mathscr{E}_{k}\right\} \cap B\left(z, 4 \lambda A_{\mathscr{H}} 2^{-k}\right)$ has cardinality at most $1+36 \lambda A_{\mathscr{H}}$. Thus, by (2.9), $\sum_{k=k_{0}}^{\infty} \sum_{Q \in \mathscr{E}_{k}} \operatorname{diam} Q \leq 2\left(1+36 \lambda A_{\mathscr{H}}\right)(1 / 14) \operatorname{diam} \Gamma \lesssim_{\mathscr{H}} \mathcal{H}^{1}(\Gamma)$.

Our strategy to prove (2.1) for $\mathscr{B}^{\prime}=\mathscr{B}^{\lambda} \backslash \mathscr{B}_{0}^{\lambda}$ is to run Schul's martingale argument. That is to say, we must verify that the hypothesis of Lemma 2.12 holds for all $Q \in \mathscr{G}$, for each possible subfamily $\mathscr{G}=\mathscr{G}^{M, j_{1}} \subset \mathscr{B}^{\lambda} \backslash \mathscr{B}_{0}^{\lambda}$:

$$
\begin{equation*}
\exists_{0<q<1} \forall_{M} \forall_{j_{1}} \forall_{Q \in \mathscr{G}} \quad \operatorname{diam} H_{Q} \leq q s_{Q}, \tag{3.3}
\end{equation*}
$$

where the maximal arc fragment H_{Q} associated to Q was chosen in Remark 2.11 and

$$
\begin{equation*}
s_{Q}=101 \ell\left(R_{Q}\right)+\sum_{Q^{\prime} \in \operatorname{Child}(Q)} \operatorname{diam} H_{Q^{\prime}} \tag{3.4}
\end{equation*}
$$

There will be a number of cases, depending on the geometry of arc fragments in U_{Q} as well as on the geometry of arcs associated to $Q^{\prime} \in \operatorname{Child}(Q)$, the children of Q in the tree \mathscr{G} (see Remark 2.7), and the size of the remainder R_{Q} (2.14). Let us quickly dispense with an easy case, which is connected to the choice of the constant 101 in (3.4).

Definition 3.3. Let $Q \in \mathscr{G}$.

- If $\ell\left(R_{Q}\right)>(1 / 100)$ diam H_{Q}, then we say that the remainder of Q is large.
- If $\ell\left(R_{Q}\right) \leq(1 / 100) \operatorname{diam} H_{Q}$, then we say the remainder of Q is small.

Lemma 3.4 (Case 1: large remainder). If $Q \in \mathscr{G}$ has large remainder, then diam $H_{Q}<$ $0.9901 s_{Q}$.

Proof. By (3.4) and definition of large remainder, diam $H_{Q}<100 \ell\left(R_{Q}\right) \leq(100 / 101) s_{Q}$ and $100 / 101=0 . \overline{9900}<0.9901$.

Case 1 occurs if, for example, Q has no children in \mathscr{G}. Having dealt with Case 1, we may now make a standing assumption that any $Q \in \mathscr{G}$ that we examine has small remainder. At a minimum, this assumption ensures that $\operatorname{Child}(Q) \neq \emptyset$. In fact, the picture that the reader should keep in mind is that H_{Q} (imagine a line segment through the center of U_{Q}) is intersected by many disjoint cores $U_{Q^{\prime}}$ with $Q^{\prime} \in \operatorname{Child}(Q)$. We emphasize that Child (Q) may be finite or infinite and $\operatorname{diam} U_{Q^{\prime}}$ can be arbitrarily small relative to diam U_{Q}.

Remark 3.5 (challenges). Broadly speaking, there are two challenges to verifying (3.3) for $Q \in \mathscr{G}$ with small remainder. First, as we previously noted in Remark 2.11, each fragment H_{Q} may be disconnected. In principle, it is possible that

$$
\begin{equation*}
\operatorname{diam} H_{Q}>\ell\left(R_{Q} \cap H_{Q}\right)+\sum_{U_{Q^{\prime}} \cap H_{Q} \neq \emptyset} \operatorname{diam} U_{Q^{\prime}} \tag{3.5}
\end{equation*}
$$

Thus, to verify $\operatorname{diam} H_{Q} \leq q s_{Q}$, we must locate additional cores $U_{Q^{\prime}}$ with $Q^{\prime} \in \operatorname{Child}(Q)$ that do not intersect H_{Q}. In (3.5) and throughout the sequel, when we write Q^{\prime} inside the subscript position of a summation or union, we implicitly mean that, in addition to any other restrictions, Q^{\prime} ranges over all $Q^{\prime} \in \operatorname{Child}(Q)$, with Q fixed nearby.

Figure 3.1. The cylinder P_{W} over a ball W with respect to a J-projection $\Pi_{T}=\Pi_{L_{T}}$ in ℓ_{1}^{2} (see Appendix B).

Secondly and more seriously, $\operatorname{diam} U_{Q^{\prime}} \geq \operatorname{diam} H_{Q^{\prime}}$ for all children, but diam $H_{Q^{\prime}}$ could be significantly smaller than $\operatorname{diam} U_{Q^{\prime}}$ if $H_{Q^{\prime}}$ is "radial". For any closed, connected set $T \subset T^{\prime} \in \Gamma_{U_{Q}}^{*}$, the diameter bound (2.12) only leads to the coarse estimate

$$
\begin{equation*}
\operatorname{diam} T \leq \ell\left(R_{Q} \cap T\right)+2.00002 \sum_{U_{Q^{\prime}} \cap T \neq \emptyset} \operatorname{diam} H_{Q^{\prime}} . \tag{3.6}
\end{equation*}
$$

This implies diam $T \leq 2.00002 s_{Q}$, which is insufficient to verify (3.3) as the coefficient $2.00002 \geq 1$. See Lemma 4.6 for a proof of (3.6).

To sidestep the first challenge in Remark 3.5 and avoid complications near the boundary, we narrow our focus to a smaller region inside of U_{Q} and to an efficient subarc $G_{Q} \subset H_{Q}$.

Remark 3.6 (choosing G_{Q}). For each $Q \in \mathscr{G}$, we may invoke Lemma 4.3 with $T^{\prime}=H_{Q}$ to choose $I_{Q}=\left[a_{Q}, b_{Q}\right] \subset \operatorname{Domain}\left(\eta_{Q}\right)$ such that $G_{Q}:=f\left(I_{Q}\right) \subset H_{Q} \cap 0.99999 Q_{*}$ and

$$
\begin{equation*}
\left|f\left(a_{Q}\right)-f\left(b_{Q}\right)\right|=\operatorname{diam} G_{Q}>0.99993 \operatorname{diam} H_{Q} \tag{3.7}
\end{equation*}
$$

(A curious reader may jump ahead and read through the proof of Lemma 4.3 at this stage; it only depends on the preliminary discussion and Lemmas 4.1 and 4.2 found in $\$ 4.1$.)

Overcoming the second challenge is more complicated. We need to account for length in R_{Q} and cores $U_{Q^{\prime}}$ appearing in a neighborhood of $T=G_{Q}$ that do not necessarily intersect G_{Q}. Ultimately, the reason that we can improve upon (3.6) is because we can find a sufficient amount of "extra length" nearby G_{Q}. Roughly speaking, for each $U_{Q^{\prime}}$ intersecting G_{Q}, there exist at least two $*$-almost flat arcs in $2 \lambda Q^{\prime}$ that intersect λQ^{\prime}. To describe improved estimates for balls with small remainder, we need to introduce a classification of cores $U_{Q^{\prime}}$ of $Q^{\prime} \in \operatorname{Child}(Q)$ involving projections onto lines.

Figure 3.2. On the left, we show a core $U_{Q^{\prime}}$ of $Q^{\prime} \in \operatorname{Child}(Q)$ with $2 \lambda Q^{\prime}$ containing a tall arc τ. On the right, we show $U_{Q^{\prime}}$ with $2 \lambda Q^{\prime}$ containing a wide arc τ. The full set $T=G_{Q}$ associated to the larger core U_{Q} is not displayed; since $\operatorname{diam} U_{Q} \gg \operatorname{diam} U_{Q^{\prime}}$, the set G_{Q} may include the union of all arcs in the figure. Cores are much smaller than illustrated.

Remark 3.7 (projections, cylinders, and transverse arcs). Given $Q \in \mathscr{G}$ and a subarc $T=f([a, b]) \subset T^{\prime} \in \Gamma_{U_{Q}}^{*}$, we define the line $L_{T}:=f(a)+\operatorname{span}\{f(a)-f(b)\}$ and choose a J-projection $\Pi_{T}: \mathbb{X} \rightarrow L_{T}$ onto L_{T} (see Appendix (B). We will often identify L_{T} with \mathbb{R}. By default, we choose this identification so that $f(a)$ lies "to the left" of $f(b)$. For every nonempty, bounded set $W \subset \mathbb{X}$, we define the cylinder $P_{W}:=\Pi_{T}^{-1}\left(\Pi_{T}(W)\right)$ of W over L_{T}. If W is connected, then P_{W} is connected (because Π_{T} is continuous) and its complement $\mathbb{X} \backslash P_{W}$ has two connected components, which we label P_{W}^{+}and P_{W}^{-}consistent with the orientation of L_{T}. If W is convex, then P_{W} is convex, as well. See Figure 3.1.

We say that an arc $\tau=\left.f\right|_{[c, d]} \in S^{*}(\lambda Q)$ is W-transverse if its two endpoints lie on opposite sides of $P_{W}: \operatorname{Start}(\tau)=f(c) \in P_{W}^{ \pm}$and $\operatorname{End}(\tau)=f(d) \in P_{W}^{\mp}$.

Definition 3.8 ("necessary" cores). Let $Q \in \mathscr{G}$ and let $T=f([a, b]) \subset T^{\prime} \in \Gamma_{U_{Q}}^{*}$ be an efficient subarc. Let Π_{T} be given by Remark 3.7. Relative to T, we declare that a core $U_{Q^{\prime}}$ with $Q^{\prime} \in \operatorname{Child}(Q)$ such that $1.00002 Q_{*}^{\prime} \cap T \neq \emptyset$ has:

- Property (N1) if there exists an arc $\tau \in S\left(\lambda Q^{\prime}\right)$ such that Image (τ) intersects both $1.00002 Q_{*}^{\prime}$ and the closed region $P_{1.01 Q_{*}^{\prime}} \backslash \operatorname{int}\left(4 Q_{*}^{\prime}\right)$; we say that τ is tall.
- Property (N2) if there exists an arc $\tau \in S\left(\lambda Q^{\prime}\right)$ such that Image $(\tau) \cap 1.00002 Q_{*}^{\prime} \neq \emptyset$ and τ is $U_{Q^{\prime}}$ transverse; we say that τ is wide. See Figure 3.2.
(These properties do not classify all cores $U_{Q^{\prime}}$ with $Q^{\prime} \in \operatorname{Child}(Q)$.) Let $\mathcal{N}_{1}(T)$ and $\mathcal{N}_{2}(T)$ denote the set of all (N1) cores, and all (N2) cores that are not (N1), respectively. Assign $\mathcal{N}(T):=\mathcal{N}_{1}(T) \cup \mathcal{N}_{2}(T)$.

Remark 3.9. The cores in $\mathcal{N}(T)$ are "necessary," because we need them to improve the coarse estimate (3.6). While necessary cores $U_{Q^{\prime}}$ lie close to T in the sense that $1.00002 Q_{*}^{\prime} \cap T \neq \emptyset$, we do not require them to intersect T. The shadows $\Pi_{T}\left(U_{Q^{\prime}}\right)$ of
necessary cores cover $\Pi_{T}(T) \backslash \Pi_{T}\left(R_{Q}\right)$ up to a small error; see $\$ 5$ for the details, especially Definition 5.7 and Lemma 5.8.

We now record the main estimates of the paper.
Lemma I (improving coarse estimate (3.6). Let $Q \in \mathscr{G}$ and let $T=f([a, b]) \subset T^{\prime} \in \Gamma_{U_{Q}}^{*}$ be an efficient subarc. Define scales
(3.8) $r_{T}:=\max \left\{\operatorname{diam} Q_{*}^{\prime}: Q^{\prime} \in \operatorname{Child}(Q), 1.00002 Q_{*}^{\prime} \cap T \neq \emptyset\right\}$ and $\rho_{T}:=2 \lambda A_{\mathscr{H}} \cdot 2^{12} r_{T}$.

Suppose \mathcal{F} is a (possibly empty) finite family of cores $U_{Q^{\prime \prime}}$ with $Q^{\prime \prime} \in \operatorname{Child}(Q)$ such that $\left\{2 \lambda Q^{\prime \prime}: U_{Q^{\prime \prime}} \in \mathcal{F}\right\}$ is pairwise disjoint and \mathcal{F} satisfies:
(F) For all $U_{Q^{\prime \prime}} \in \mathcal{F}$, we have $2 \lambda Q^{\prime \prime} \cap 16 Q_{*}^{\prime}=\emptyset$ for every core $U_{Q^{\prime}} \in \operatorname{Child}(Q)$ with $\operatorname{diam} Q^{\prime}>\operatorname{diam} Q^{\prime \prime}$.
Let $\mathcal{N}_{2}=\mathcal{N}_{2}(T)$ and let $\mathcal{N}_{\mathcal{F}}$ denote the set of all cores $U_{Q^{\prime}}$ with $Q^{\prime} \in \operatorname{Child}(Q)$ such that $U_{Q^{\prime}} \subset 1.99 \lambda Q^{\prime \prime}$ for some $U_{Q^{\prime \prime}} \in \mathcal{F}$. Then

$$
\begin{align*}
& \operatorname{diam} T-2 \rho_{T} \leq 2.2 \ell\left(R_{Q} \cap B_{9 r_{T}}(T)\right)+\sum_{U_{Q^{\prime \prime} \in \mathcal{F}}} \operatorname{diam} 2 \lambda Q^{\prime \prime} \tag{3.9}\\
&+1.00016 \sum_{U_{Q^{\prime}} \in \mathcal{N}_{2} \backslash \mathcal{N}_{\mathcal{F}}} \\
& \operatorname{diam} H_{Q^{\prime}}+0.95 \sum_{U_{Q^{\prime}} \notin \mathcal{N}_{2} \cup \mathcal{N}_{\mathcal{F}}} \operatorname{diam} H_{Q^{\prime}} .
\end{align*}
$$

where the sums in the second line may be further restricted to $U_{Q^{\prime}}$ contained in $B_{9 r_{T}}(T)$.
The proof of Lemma \square is given in $\$ 6$, using the setup of $\$ 4$ and $\S 5$. We invite the reader to compare and contrast (3.9) with (3.6). While the coefficient 1.00016 is substantially smaller than 2.00002, it is unfortunately still not less than 1 . As a consequence, we must split verification of (3.3) for balls with small remainder into two cases.

Lemma 3.10 (Case 2: many non \mathcal{N}_{2} cores). If $Q \in \mathscr{G}$ (with or without small remainder) and U_{Q} has many non- $\mathcal{N}_{2}\left(G_{Q}\right)$ cores in the sense that

$$
\begin{equation*}
\sum_{U_{Q^{\prime}} \notin \mathcal{N}_{2}\left(G_{Q}\right)} \operatorname{diam} U_{Q^{\prime}}>0.05 \operatorname{diam} H_{Q} \tag{3.10}
\end{equation*}
$$

then $\operatorname{diam} H_{Q}<0.999 s_{Q}$.
Proof. By Lemma I, with $T=G_{Q}$ and $\mathcal{F}=\emptyset$, together with (3.7), the observation $2 \rho_{G_{Q}} \ll \operatorname{diam} H_{Q}$ (see (2.7), (2.11), and (2.12) and (3.10), we have

$$
\begin{aligned}
& 1.00016 s_{Q}= 101.01616 \ell\left(R_{Q}\right)+1.00016 \\
& \sum_{Q^{\prime} \in \operatorname{Child}(Q)} \operatorname{diam} H_{Q^{\prime}} \\
& \geq \operatorname{diam} G_{Q}-2 \rho_{G_{Q}}+(1.00016-0.95) \sum_{U_{Q^{\prime}} \notin \mathcal{N}_{2}\left(G_{Q}\right)} \operatorname{diam} H_{Q^{\prime}}
\end{aligned}
$$

$$
\geq 0.99993 \operatorname{diam} H_{Q}-0.00001 \operatorname{diam} H_{Q}+(0.05016 \times 0.49999 \times 0.05) \operatorname{diam} H_{Q}
$$

Rearranging, we obtain $\operatorname{diam} H_{Q} \leq 0.99898 \ldots s_{Q}$.

The final case is the most difficult, requiring us to combine estimates inside and outside of $\left\{2 \lambda Q^{\prime \prime}: U_{Q^{\prime \prime}} \in \mathcal{A}\right\}$ for a family of cores $\mathcal{A} \subset \mathcal{N}_{2}\left(G_{Q}\right)$. The family \mathcal{A} is chosen according to the following lemma, which we prove in $\$ 7$.

Lemma II. If $Q \in \mathscr{G}$ has small remainder and U_{Q} has few non- $\mathcal{N}_{2}\left(G_{Q}\right)$ cores in the sense that

$$
\begin{equation*}
\sum_{U_{Q^{\prime}} \notin \mathcal{N}_{2}\left(G_{Q}\right)} \operatorname{diam} U_{Q^{\prime}} \leq 0.05 \operatorname{diam} H_{Q}, \tag{3.11}
\end{equation*}
$$

then there exists a finite collection $\mathcal{A} \subset \mathcal{N}_{2}\left(G_{Q}\right)$ such that $\left\{2 \lambda Q^{\prime \prime}: U_{Q^{\prime \prime}} \in \mathcal{A}\right\}$ is pairwise disjoint, \mathcal{A} satisfies property (F) with $T=G_{Q}$,

$$
\begin{gather*}
\sum_{U_{Q^{\prime \prime}} \in \mathcal{A}} \operatorname{diam} 2 \lambda Q^{\prime \prime} \geq 0.04 \operatorname{diam} H_{Q}, \quad \text { and } \tag{3.12}\\
\sum_{U_{Q^{\prime \prime}} \in \mathcal{A}} \operatorname{diam} 2 \lambda Q^{\prime \prime} \leq 2 \ell\left(R_{Q}\right)+0.91 \sum_{U_{Q^{\prime}} \in \mathcal{N}_{\mathcal{A}}} \operatorname{diam} H_{Q^{\prime}}, \tag{3.13}
\end{gather*}
$$

where $\mathcal{N}_{\mathcal{A}}:=\left\{U_{Q^{\prime}}: Q^{\prime} \in \operatorname{Child}(Q), U_{Q^{\prime}} \subset 1.99 \lambda Q^{\prime \prime}\right.$ for some $\left.U_{Q^{\prime \prime}} \in \mathcal{A}\right\}$.
Lemma 3.11 (Case 3: few non- \mathcal{N}_{2} cores). If $Q \in \mathscr{G}$ has small remainder and (3.11) holds, then $\operatorname{diam} H_{Q}<0.9963 s_{Q}$.

Proof. Let \mathcal{A} be given by Lemma II. By Lemma I, with $T=G_{Q}$ and $\mathcal{F}=\mathcal{A}$, and (3.13),

$$
\operatorname{diam} G_{Q}-2 \rho_{G_{Q}} \leq 4.2 \ell\left(R_{Q}\right)+0.91 \sum_{U_{Q^{\prime}} \in \mathcal{N}_{\mathcal{A}}} \operatorname{diam} H_{Q^{\prime}}+1.00016 \sum_{U_{Q^{\prime}} \notin \mathcal{N}_{\mathcal{A}}} \operatorname{diam} H_{Q^{\prime}}
$$

Together with (3.7) and the observation $2 \rho_{G_{Q}} \ll \operatorname{diam} H_{Q}$ (see (2.7), (2.11)), followed by (3.12) and (3.13) (again), we obtain

$$
\begin{aligned}
1.00016 s_{Q} & =101.01616 \ell\left(R_{Q}\right)+1.00016 \sum_{Q^{\prime} \in \operatorname{Child}(Q)} \operatorname{diam} H_{Q^{\prime}} \\
& \geq \operatorname{diam} G_{Q}-2 \rho_{G_{Q}}+(101-4.2) \ell\left(R_{Q}\right)+(1.00016-0.91) \sum_{U_{Q^{\prime}} \in \mathcal{N}_{\mathcal{A}}} \operatorname{diam} H_{Q^{\prime}} \\
& \geq 0.99993 \operatorname{diam} H_{Q}-0.00001 \operatorname{diam} H_{Q}+(0.04 \times 0.09016 \div 0.91) \operatorname{diam} H_{Q} .
\end{aligned}
$$

Rearranging, we obtain $\operatorname{diam} H_{Q} \leq 0.99629 \ldots s_{Q}$.
In review, the hypothesis of Lemma 2.12 is satisfied with $q=0.999<1$. This completes the proof of the Main Theorem, up to verification of Lemma \square and Lemma Π.

4. Geometric preliminaries and coarse estimates

4.1. Basic geometry with beta numbers. Let's record consequences of (3.1) on the flatness of almost flat and *-almost flat arcs at some common scales. We use the fact that
all beta numbers are bounded by $1, \epsilon_{2}=2^{-55} \epsilon_{1} / A_{\mathscr{H}} \leq 2^{-55} / A_{\mathscr{H}}$, and $\lambda \leq 5<8$. Let $Q \in \mathscr{G}$ and $\tau \in \Lambda(\lambda Q)$. If τ is almost flat, i.e. $\tau \in S(\lambda Q)$, then there is a line L such that

$$
\begin{align*}
\operatorname{dist}(x, L) \leq 2 \epsilon_{2} \beta_{\Gamma}(Q) \operatorname{Diam} \tau & \leq 2^{-54} A_{\mathscr{H}}^{-1} \operatorname{diam} 2 \lambda Q \\
& \leq 2^{-50} A_{\mathscr{H}}^{-1} \operatorname{diam} Q \leq 2^{-38} \operatorname{diam} Q_{*} \quad \forall x \in \operatorname{Image}(\tau) \tag{4.1}
\end{align*}
$$

If τ is $*$-almost flat, i.e. $\tau \in S^{*}(\lambda Q)$, then there is a line L such that

$$
\begin{align*}
\operatorname{dist}(x, L) \leq 64 \epsilon_{2} \beta_{\Lambda(\lambda Q)}(2 \lambda Q) & \operatorname{Diam} \tau \leq 2^{-49} A_{\mathscr{H}}^{-1} \beta_{S^{*}(\lambda Q)}(2 \lambda Q) \operatorname{diam} 2 \lambda Q \tag{4.2}\\
& \leq 2^{-45} A_{\mathscr{H}}^{-1} \operatorname{diam} Q \leq 2^{-33} \operatorname{diam} Q_{*} \quad \forall x \in \operatorname{Image}(\tau)
\end{align*}
$$

where in the second inequality we used $\epsilon_{1} \beta_{\Lambda(\lambda Q)}(2 \lambda Q)<\beta_{S^{*}(\lambda Q)}(2 \lambda Q)$ by Definition 1.11 . (We shall never refer to ϵ_{1} again.) Recall that $2^{-M}<\beta_{S^{*}(\lambda Q)}(2 \lambda Q) \leq 2^{-(M-1)}$ whenever $Q \in \mathscr{G}$. In particular, for any $Q \in \mathscr{G}$ and $\tau \in S^{*}(\lambda Q)$, the line L from (4.2) also satisfies

$$
\begin{equation*}
\operatorname{dist}(x, L) \leq 2^{-49} A_{\mathscr{H}}^{-1} \beta_{S^{*}(\lambda Q)}(2 \lambda Q) \operatorname{diam} 2 \lambda Q<2^{-M-48} \operatorname{diam} 2 \lambda Q \quad \forall x \in \operatorname{Image}(\tau) \tag{4.3}
\end{equation*}
$$

Lemma 4.1 (bilateral- β estimate for arcs). Let $\tau=\left.f\right|_{[a, b]}$ be an arc, let L be a line in \mathbb{X}, and let Π_{L} be a J-projection onto L. If $\operatorname{dist}(x, L) \leq \beta$ for all $x \in \operatorname{Image}(\tau)$, then

$$
\begin{gather*}
\left|\Pi_{L}(x)-x\right| \leq 2 \operatorname{dist}(x, L) \leq 2 \beta \quad \text { for all } x \in \operatorname{Image}(\tau), \text { and } \tag{4.4}\\
\operatorname{dist}(y, \operatorname{Image}(\tau)) \leq \operatorname{dist}\left(y, \Pi_{L}(\operatorname{Image}(\tau))\right)+2 \beta \quad \text { for all } y \in L \tag{4.5}
\end{gather*}
$$

Proof. Let $y \in L$. Choose $z \in \Pi_{L}(\operatorname{Image}(\tau))$ such that $|y-z|=\operatorname{dist}\left(y, \Pi_{L}(\operatorname{Image}(\tau))\right)=: \delta$. Next, choose $x \in \operatorname{Image}(\tau)$ such that $\Pi_{L}(x)=z$. By Lemma B.4, $|z-x|=\left|\Pi_{L}(x)-x\right| \leq$ $2 \operatorname{dist}(x, L) \leq 2 \beta$. Thus, $\operatorname{dist}(y, \operatorname{Image}(\tau)) \leq|y-x| \leq|y-z|+|z-x| \leq \delta+2 \beta$.

We emphasize that the following inequality (used to prove Lemma 4.3) is valid in any Banach space; in particular, it does not require uniform nor strict convexity of the norm. It is instructive to think about the inequality in the case when $\mathbb{X}=\ell_{\infty}^{2}=\left(\mathbb{R}^{2},|\cdot|_{\infty}\right)$ and the line segment (c, d) is horizontal.

Lemma 4.2. Let $c, d \in \mathbb{X}, r>0$, and $0<s<1$. If $c, d \in B(x, r)$ and the segment (c, d) intersects $B(x, s r)$, then $|(1-\mu) c+\mu d-x| \leq r-r(1-s) \min \{\mu, 1-\mu\}$ for all $0 \leq \mu \leq 1$.

Proof. Without loss of generality, we may assume that $x=0$. By assumption, there exists $0<\rho<1$ such that $z=(1-\rho) c+\rho d$ satisfies $|z| \leq s r$. Suppose that $y=(1-\mu) c+\mu d$ for some $0 \leq \mu \leq \rho$. Then $y=(1-\nu) c+\nu z=(1-\nu \rho) c+\nu \rho d$ for some $0 \leq \nu \leq 1$. This shows $\mu=\nu \rho$; in particular, $\mu \leq \nu$. Hence $|y| \leq(1-\nu)|c|+\nu|z| \leq(1-\nu) r+\nu s r \leq r-r(1-s) \mu$. The case $\rho \leq \mu \leq 1$ is similar, except that μ should be replaced by $1-\mu$.

Lemma 4.3 (existence of G_{Q}). Let $Q \in \mathscr{G}$ and let $T^{\prime} \in \Gamma_{U_{Q}}^{*}$, say $T^{\prime}=$ Image $(\tau) \cap U_{Q}$ for some $\tau=\left.f\right|_{[a, b]} \in S(\lambda Q)$. If $T^{\prime} \cap(1 / 4) Q_{*} \neq \emptyset$, then there exists $\left[a_{T}, b_{T}\right] \subset[a, b]$ such that $T:=f\left(\left[a_{T}, b_{T}\right]\right)$ lies in $T^{\prime} \cap 0.99999 Q_{*}$, and $\left|f\left(a_{T}\right)-f\left(b_{T}\right)\right|=\operatorname{diam} T>0.99993 \operatorname{diam} T^{\prime}$. Moreover, the subarc T intersects $0.25007 Q_{*}^{\prime}$.

Figure 4.1. Exaggerated picture (curve should be flatter) of η_{Q} such that H_{Q} has two connected components. The dots indicate points in H_{Q} with distance equal to diam H_{Q}. (Arc through center of Q_{*} is not displayed.)

Proof. Because τ is almost flat, we can find a line L such that (4.1) holds. Further, since T^{\prime} intersects $(1 / 4) Q_{*}$, it follows that diam $T^{\prime} \geq(3 / 8) \operatorname{diam} Q_{*}>(1 / 4) \operatorname{diam} Q_{*}$ and

$$
\begin{equation*}
\operatorname{dist}(x, L) \leq 2^{-38} \operatorname{diam} Q_{*}^{\prime} \leq 2^{-36} \operatorname{diam} T^{\prime} \quad \forall x \in \operatorname{Image}(\tau) ; \quad 2^{-38}<10^{-10} \tag{4.6}
\end{equation*}
$$

Let Π_{L} be a J-projection onto L. Then, by Lemma 4.1,
(4.7) $\quad\left|\Pi_{L}(x)-x\right|<0.0000000002 \operatorname{diam} Q_{*}^{\prime} \leq 0.0000000008 \operatorname{diam} T^{\prime} \quad \forall x \in \operatorname{Image}(\tau)$.

Using (4.7) and the triangle inequality, we obtain

$$
\begin{equation*}
\left|\Pi_{L}(x)-\Pi_{L}(y)\right| \leq|x-y|<1.00000002\left|\Pi_{L}(x)-\Pi_{L}(y)\right| \tag{4.8}
\end{equation*}
$$

whenever $x, y \in \operatorname{Image}(\tau)$ and $|x-y| \geq 0.1 \operatorname{diam} T^{\prime}$. Identifying L with \mathbb{R}, we can define

$$
c:=\min \left\{\Pi_{L}(x): x \in \overline{T^{\prime}}\right\} \quad \text { and } \quad d:=\max \left\{\Pi_{L}(x): x \in \overline{T^{\prime}}\right\} .
$$

Choosing any $u, v \in \overline{T^{\prime}}$ such that $|u-v|=\operatorname{diam} \overline{T^{\prime}}=\operatorname{diam} T^{\prime}$ and using (4.8), we see that

$$
\begin{equation*}
\operatorname{diam} T^{\prime} \geq d-c \geq\left|\Pi_{L}(u)-\Pi_{L}(v)\right|>(1.00000002)^{-1} \operatorname{diam} T^{\prime} \tag{4.9}
\end{equation*}
$$

Suppose $c+0.00003 \operatorname{diam} T^{\prime} \leq p \leq d-0.00003 \operatorname{diam} T^{\prime}$ and let $x \in \Pi_{L}^{-1}(p) \cap \operatorname{Image}(\tau)$. By the first inequality in (4.9), $p=(1-\mu) c+\mu d$ for some $0<\mu<1$ with $\min \{\mu, 1-\mu\} \geq$ 0.00003 . We would like to use Lemma 4.2 to show that $x \in 0.99999 Q_{*}$. Let's check the hypothesis of the lemma. Certainly, $c, d \in 1.000011 Q_{*}$ and the segment (c, d) intersects $0.2500000002 Q_{*} \subset 0.25 \cdot 1.000011 Q_{*}$, since $T^{\prime} \subset U_{Q} \subset 1.00001 Q_{*}, T^{\prime} \cap(1 / 4) Q_{*} \neq \emptyset$, and (4.7) is in effect. By Lemma 4.2, applied with $s=0.25$ and $\min \{\mu, 1-\mu\} \geq 0.00003$, we discover $p \in 0.9999775 \cdot 1.000011 Q_{*} \subset 0.9999885 Q_{*}$. Thus, by (4.7), $x \in 0.99999 Q_{*}$.

To continue, because Π_{L} is continuous and $\operatorname{Image}(\tau)$ is connected, there must exist $\left[\tilde{a}_{T}, \tilde{b}_{T}\right] \subset[a, b]$ such that $\Pi_{L}\left(f\left(\tilde{a}_{T}\right)\right)=c+.00003 \operatorname{diam} T^{\prime}, \Pi_{L}\left(f\left(\tilde{b}_{T}\right)\right)=d-.00003 \operatorname{diam} T^{\prime}$ (or vice-versa), and $\Pi_{L}(f(t))$ lies in between for all $t \in\left[\tilde{a}_{T}, \tilde{b}_{T}\right]$. Define $\tilde{T}:=f\left(\left[\tilde{a}_{T}, \tilde{b}_{T}\right]\right)$.

On the one hand, by the previous paragraph, we have $\tilde{T} \subset \operatorname{Image}(\tau) \cap 0.99999 Q_{*}=$ $T^{\prime} \cap 0.99999 Q_{*}$, since $0.99999 Q_{*} \subset U_{Q}$ and $T^{\prime} \in \Gamma_{U_{Q}}^{*}$. Hence, by (4.7),
$\operatorname{diam} T^{\prime} \geq \operatorname{diam} \tilde{T} \geq\left|f\left(\tilde{a}_{T}\right)-f\left(\tilde{b}_{T}\right)\right| \geq d-c-0.00006 \operatorname{diam} T^{\prime}-0.0000000016 \operatorname{diam} T^{\prime}$.
Using the last inequality in (4.9), it follows that $\operatorname{diam} \tilde{T}>0.99993997 \operatorname{diam} T^{\prime}$. On the other hand, if $s, t \in[\tilde{a}, \tilde{b}], \Pi_{L}(f(s))<\Pi_{L}(f(t))$, and $\Pi_{L}(f(s)) \geq c+0.0000301 \operatorname{diam} T^{\prime}$ or $\Pi_{L}(f(t)) \leq d-0.0000301 \operatorname{diam} T^{\prime}$, then
$|f(s)-f(t)| \leq d-c-0.0000601 \operatorname{diam} T^{\prime}+0.0000000016 \operatorname{diam} T^{\prime}<0.99993991 \operatorname{diam} T^{\prime}$, whence $|f(s)-f(t)|<\operatorname{diam} \tilde{T}$. Choose any $a_{T}, b_{T} \in\left[\tilde{a}_{T}, \tilde{b}_{T}\right]$ such that $\Pi_{L}\left(a_{T}\right)<\Pi_{L}\left(b_{T}\right)$ and $\left|f\left(a_{T}\right)-f\left(b_{T}\right)\right|=\operatorname{diam} \tilde{T}$. By the previous computation, we necessarily have

$$
\begin{equation*}
\Pi_{L}\left(a_{T}\right)<c+0.0000301 \operatorname{diam} T^{\prime} \quad \text { and } \quad \Pi_{L}\left(b_{T}\right)>d-0.0000301 \operatorname{diam} T^{\prime} \tag{4.10}
\end{equation*}
$$

Define $T:=f\left(\left[a_{T}, b_{T}\right]\right)$. Then T is an efficient subarc of $T^{\prime} \cap 0.99999 Q_{*}$ with $\operatorname{diam} T=$ $\operatorname{diam} \tilde{T}>0.99993 \operatorname{diam} T^{\prime}$.

Lastly, let y be any point such that $y \in(c, d) \cap 0.2500000002 Q_{*}$. Shift from y to a point $y^{\prime} \in \Pi_{L}(T)$ as needed. By 4.10), we can do this in such a way that $\left|y-y^{\prime}\right|<$ $0.0000301 \mathrm{diam} T^{\prime}$. Then we can find at least one point $x \in T$ such that $\Pi_{L}(x)=y^{\prime}$ and $|x-y|<0.00003011$ diam T^{\prime} by (4.7). Since diam T^{\prime} is at most 2.00002 times the radius of the ball Q_{*}, we conclude that $x \in T$ lies in $0.25006023 Q_{*}$.
4.2. Geometry of \mathcal{N}_{1} cores. For each necessary core $U_{Q^{\prime}}$, we define neighborhoods $D_{Q^{\prime}}$, $E_{Q^{\prime}}$, and $F_{Q^{\prime}}$. Their relationship is that $E_{Q^{\prime}}$ is slightly smaller than $D_{Q^{\prime}}, F_{Q^{\prime}}$ is slightly smaller than $E_{Q^{\prime}}$, and $U_{Q^{\prime}}$ is smaller than $F_{Q^{\prime}}$. In § \S, we use "extra length" from diam $H_{Q^{\prime \prime}}$ associated to cores $U_{Q^{\prime \prime}}$ that intersect $F_{Q^{\prime}}$ and lie inside of $E_{Q^{\prime}}$ to "pay for" the length of the interval $\Pi_{T}\left(D_{Q^{\prime}}\right)$. The definition of the neighborhoods depends on the type of core. For the definition of \mathcal{N}_{1} cores and tall subarcs, see Definition 3.8.

Definition 4.4. Let $Q \in \mathscr{G}$ and let $T=f([a, b]) \subset T^{\prime} \in \Gamma_{U_{Q}}^{*}$ be an efficient subarc. For all $U_{Q^{\prime}} \in \mathcal{N}_{1}(T)$, we define neighborhoods $D_{Q^{\prime}} \supset E_{Q^{\prime}} \supset F_{Q^{\prime}}$ of $U_{Q^{\prime}}$ by

$$
D_{Q^{\prime}}:=P_{1.04 Q_{*}^{\prime}} \cap 4 Q_{*}^{\prime}, \quad E_{Q^{\prime}}:=P_{1.03 Q_{*}^{\prime}} \cap 3.99 Q_{*}^{\prime}, \quad F_{Q^{\prime}}:=P_{1.02 Q_{*}^{\prime}} \cap 3.98 Q_{*}^{\prime} .
$$

Lemma 4.5 (tall subarcs). Let $Q \in \mathscr{G}$ and $T=f([a, b]) \subset T^{\prime} \in \Gamma_{U_{Q}}^{*}$ be an efficient subarc. If $U_{Q^{\prime}} \in \mathcal{N}_{1}(T)$ and $\tau \in S\left(\lambda Q^{\prime}\right)$ is a tall arc, then there exists a subarc T_{τ} of Image $(\tau) \cap F_{Q^{\prime}} \backslash U_{Q^{\prime}}$ such that $\operatorname{diam} T_{\tau} \geq 1.48 \operatorname{diam} Q_{*}^{\prime}$.

Proof. Pick any $t_{0}, t_{3} \in \operatorname{Domain}(\tau)$ such that $\tau\left(t_{0}\right) \in P_{1.01 Q_{*}^{\prime}} \backslash \operatorname{int}\left(4 Q_{*}^{\prime}\right)$ and $\tau\left(t_{3}\right) \in$ $1.00002 Q_{*}^{\prime}$. Without loss of generality, suppose that $t_{0}<t_{3}$. We let $t_{2}>t_{0}$ be the first time after t_{0} with $\tau\left(t_{2}\right) \in \partial\left(1.00003 Q_{*}^{\prime}\right)$. Then we define $t_{1}:=\max \left\{t \in\left[t_{0}, t_{2}\right]: \tau(t) \in\right.$ $\left.\partial\left(3.97999 Q_{*}^{\prime}\right)\right\}$.

We claim that the subarc $T_{\tau}:=\tau\left(\left[t_{1}, t_{2}\right]\right)$ satisfies the required conditions. Foremost, $\operatorname{diam} T_{\tau} \geq\left|\tau\left(t_{1}\right)-\tau\left(t_{2}\right)\right| \geq 2.97996$ radius $Q_{*}^{\prime}=1.48998 \operatorname{diam} Q_{*}^{\prime}$. Also, $T_{\tau} \subset 3.98 Q_{*} \backslash U_{Q^{\prime}}$ by the way we defined t_{1} and t_{2}. It remains to verify that $\tau\left(\left[t_{1}, t_{2}\right]\right) \subset P_{1.02 Q_{*}^{\prime}}$. First note
that we arranged for $\tau\left(t_{0}\right)$ and $\tau\left(t_{2}\right)$ to lie in $P_{1.01 Q_{*}^{\prime}}$. Second note that τ is almost flat. Consulting (4.1) and (4.4), we can find a line L and J-projection Π_{L} onto L such that

$$
\begin{equation*}
\left|\Pi_{L}(x)-x\right| \leq 2 \operatorname{dist}(x, L) \leq 2^{-37} \operatorname{diam} Q_{*}^{\prime} \quad \text { for every } x \in \operatorname{Image}(\tau) \tag{4.11}
\end{equation*}
$$

Hence we can locate $y, z \in L$ nearby $\tau\left(t_{0}\right)$ and $\tau\left(t_{3}\right)$ such that $y \notin 3.999 Q_{*}^{\prime}, z \in 1.001 Q_{*}^{\prime}$, and $y, z \in P_{1.011}$. By convexity, the whole segment $[y, z] \subset P_{1.011 Q_{*}^{\prime}}$ too. From 4.11), the fact that $2^{-37} \ll 0.001$, and the triangle inequality it follows that $\tau\left(\left[t_{1}, t_{2}\right]\right) \subset$ $\left.B_{2^{-37} \operatorname{diam} Q_{*}^{\prime}}[x, y]\right) \subset P_{1.012 Q_{*}^{\prime}}$, as well. This shows-with plenty of room to spare - that $T_{\tau}=\tau\left(\left[t_{1}, t_{2}\right]\right)$ is a subarc of $\operatorname{Image}(\tau) \cap F_{Q^{\prime}} \backslash U_{Q^{\prime}}$.
Lemma 4.6. If $Q \in \mathscr{G}$ and $T \subset \Gamma \cap U_{Q}$ is a closed, connected set, then the coarse estimate (3.6) holds for T.

Proof. Choose $x, y \in T$ such that $|x-y|=\operatorname{diam} T$ and let Π_{T} be a J-projection onto the line through x and y; see Appendix B. Since Π_{T} is 1-Lipschitz, Π_{T} fixes x and y, and T is connected, $\Pi_{T}(T)=[x, y]$. Since $T \subset \Gamma \cap U_{Q}$, we can cover T by $R_{Q} \cap T$ and the set of cores $U_{Q^{\prime}}$ of $Q^{\prime} \in \operatorname{Child}(Q)$ such that $U_{Q^{\prime}} \cap T \neq \emptyset$. By countable subadditivity of \mathcal{H}^{1}, the isodiametric inequality $\mathcal{H}^{1}(A) \leq \operatorname{diam} A$ for all sets $A \subset \mathbb{R}$, and Π_{T} being 1-Lipschitz,

$$
\begin{equation*}
\operatorname{diam} T \leq \mathcal{H}^{1}\left(\Pi_{T}\left(R_{Q} \cap T\right)\right)+\sum_{U_{Q^{\prime}} \cap T \neq \emptyset} \mathcal{H}^{1}\left(\Pi_{T}\left(U_{Q^{\prime}}\right)\right) \leq \ell\left(R_{Q} \cap T\right)+\sum_{U_{Q^{\prime}} \cap T \neq \emptyset} \operatorname{diam} U_{Q^{\prime}} \tag{4.12}
\end{equation*}
$$

Hence (3.6) follows from (4.12) and (2.12).
Lemma 4.7. Let $Q \in \mathscr{G}$ and let $T \subset T^{\prime} \in \Gamma_{U_{Q}}^{*}$ be an efficient subarc. If $U_{Q^{\prime}} \in \mathcal{N}_{1}(T)$, then there is a set $\mathcal{M}_{Q^{\prime}}$ of cores $U_{Q^{\prime \prime}}$ with $Q^{\prime \prime} \in \operatorname{Child}(Q)$ and $U_{Q^{\prime \prime}} \cap F_{Q^{\prime}} \neq \emptyset$ such that

$$
\begin{equation*}
\operatorname{diam} \Pi_{T}\left(D_{Q^{\prime}}\right)<0.5 \ell\left(R_{Q} \cap F_{Q^{\prime}}\right)+0.84 \sum_{U_{Q^{\prime \prime}} \in \mathcal{M}_{Q^{\prime}}} \operatorname{diam} H_{Q^{\prime \prime}} \tag{4.13}
\end{equation*}
$$

Proof. Choose a tall arc $\tau \in S\left(\lambda Q^{\prime}\right)$ and let T_{τ} be the subarc of Image $(\tau) \cap F_{Q^{\prime}} \backslash U_{Q^{\prime}}$ given by Lemma 4.5. Define $\mathcal{M}_{Q^{\prime}}=\left\{U_{Q^{\prime}}\right\} \cup\left\{U_{Q^{\prime \prime}}: U_{Q^{\prime \prime}} \cap T_{\tau} \neq \emptyset\right\}$. Applying the coarse estimate (3.6), we find that

$$
1.48 \operatorname{diam} Q_{*}^{\prime} \leq \operatorname{diam} T_{\tau} \leq \ell\left(R_{Q} \cap T_{\tau}\right)+2.00002 \sum_{U_{Q^{\prime \prime}} \in \mathcal{M}_{Q^{\prime}} \backslash\left\{U_{Q^{\prime}}\right\}} \operatorname{diam} H_{Q^{\prime \prime}}
$$

We also know that $\operatorname{diam} Q_{*}^{\prime} \leq \operatorname{diam} U_{Q^{\prime}} \leq 2.00002$ diam $H_{Q^{\prime}}$ by (2.12). Hence

$$
2.38461 \operatorname{diam} 1.04 Q_{*}^{\prime} \leq 2.48 \operatorname{diam} Q_{*}^{\prime} \leq \ell\left(R_{Q} \cap T_{\tau}\right)+2.00002 \sum_{U_{Q^{\prime \prime}} \in \mathcal{M}_{Q^{\prime}}} \operatorname{diam} H_{Q^{\prime \prime}}
$$

Since diam $\Pi_{T}\left(D_{Q^{\prime}}\right) \leq \operatorname{diam} 1.04 Q_{*}^{\prime}$ and $T_{\tau} \subset F_{Q^{\prime}}$, this yields 4.13).
4.3. Geometry of \mathcal{N}_{2} cores. Recall from Definition 3.8 that every core $U_{Q^{\prime}} \in \mathcal{N}_{2}(T)$ admits a wide arc. To prove Lemma we will need to distinguish between the case that some wide arc τ lies near the center of Q_{*}^{\prime} and the case that every wide arc is far from the center of Q_{*}^{\prime}.

Definition 4.8. Let $Q \in \mathscr{G}$ and let $T \subset T^{\prime} \in \Gamma_{U_{Q}}^{*}$ be an efficient subarc. Suppose that $U_{Q^{\prime}} \in \mathcal{N}_{2}(T)$. We say that $U_{Q^{\prime}} \in \mathcal{N}_{2.1}(T)$ if there exists a wide $\operatorname{arc} \tau$ such that Image $(\tau) \cap 2^{-14} Q_{*}^{\prime} \neq \emptyset$. Otherwise, we say that $U_{Q^{\prime}} \in \mathcal{N}_{2.2}(T)$.

Definition 4.9. Let $Q \in \mathscr{G}$ and $T=f([a, b]) \subset T^{\prime} \in \Gamma_{U_{Q^{\prime}}}^{*}$ be an efficient subarc. For all $U_{Q^{\prime}} \in \mathcal{N}_{2.1}(T)$, we define neighborhoods $D_{Q^{\prime}} \supset E_{Q^{\prime}} \supset F_{Q^{\prime}}$ of $U_{Q^{\prime}}$ by

$$
D_{Q^{\prime}}:=1.00002 Q_{*}^{\prime}, \quad E_{Q^{\prime}}:=U_{Q^{\prime}}, \quad F_{Q^{\prime}}:=U_{Q^{\prime}}
$$

For all $U_{Q^{\prime}} \in \mathcal{N}_{2.2}(T)$, we define neighborhoods $D_{Q^{\prime}} \supset E_{Q^{\prime}} \supset F_{Q^{\prime}}$ of $U_{Q^{\prime}}$ by

$$
D_{Q^{\prime}}:=16 Q_{*}^{\prime}, \quad E_{Q^{\prime}}:=15.99 Q_{*}^{\prime}, \quad F_{Q^{\prime}}:=15.98 Q_{*}^{\prime} .
$$

Lemma 4.10. Let $Q \in \mathscr{G}$ and let $T \subset T^{\prime} \in \Gamma_{U_{Q}}^{*}$ be an efficient subarc. If $U_{Q^{\prime}} \in \mathcal{N}_{2.1}(T)$, then $\operatorname{diam} D_{Q^{\prime}} \leq 1.00016$ diam $H_{Q^{\prime}}$.

Proof. Let τ be a wide arc such that Image $(\tau) \cap 2^{-14} Q_{*}^{\prime} \neq \emptyset$. By (4.1), there exists a line L such that $\operatorname{dist}(p, L) \leq 2^{-38} \operatorname{diam} Q_{*}^{\prime}$ for all $p \in \operatorname{Image}(\tau)$. Since τ is wide and Image (τ) intersects $2^{-14} Q_{*}^{\prime}$, the set Image (τ) meets both connected components of $\partial Q_{*}^{\prime} \cap$ $B_{2^{-38} \operatorname{diam} Q_{*}^{\prime}}(L)$; choose points $y, z \in \operatorname{Image}(\tau) \cap \partial Q_{*}^{\prime}$, one from each of the components. Let x denote the center of Q_{*}^{\prime}; then $\operatorname{dist}(x, \operatorname{Image}(\tau)) \leq 2^{-14}$ radius $Q_{*}^{\prime}=2^{-15} \operatorname{diam} Q_{*}^{\prime}$. By our assertions above, we can find points $x^{\prime}, y^{\prime}, z^{\prime} \in L$, with x^{\prime} lying between y^{\prime} and z^{\prime}, such that $\left|x-x^{\prime}\right| \leq\left(2^{-15}+2^{-38}\right) \operatorname{diam} Q_{*}^{\prime},\left|y-y^{\prime}\right| \leq 2^{-38} \operatorname{diam} Q_{*}^{\prime}$, and $\left|z-z^{\prime}\right| \leq 2^{-38} \operatorname{diam} Q_{*}^{\prime}$. Define $y^{\prime \prime}=y^{\prime}+x-x^{\prime}$ and $z^{\prime \prime}=z^{\prime}+x-x^{\prime}$, so that $y^{\prime \prime}$ and $z^{\prime \prime}$ lie on a line through x, with x in between $y^{\prime \prime}$ and $z^{\prime \prime}$. Now,

$$
\left|y^{\prime \prime}-x\right| \geq|y-x|-\left|y^{\prime \prime}-y^{\prime}\right|-\left|y^{\prime}-y\right| \geq\left(1 / 2-2^{-15}-2^{-37}\right) \operatorname{diam} Q_{*}^{\prime} .
$$

Similarly, $\left|z^{\prime \prime}-x\right| \geq\left(1 / 2-2^{-15}-2^{-37}\right)$ diam Q_{*}^{\prime}. Hence $\left|y^{\prime \prime}-z^{\prime \prime}\right|=\left|y^{\prime \prime}-x\right|+\left|x-z^{\prime \prime}\right| \geq$ $\left(1-2^{-14}-2^{-36}\right) \operatorname{diam} Q_{*}^{\prime}$. It follows that
$|y-z| \geq\left|y^{\prime \prime}-z^{\prime \prime}\right|-\left|y^{\prime \prime}-y^{\prime}\right|-\left|y^{\prime}-y\right|-\left|z^{\prime \prime}-z^{\prime}\right|-\left|z^{\prime}-z\right| \geq\left(1-2^{-13}-2^{-35}\right) \operatorname{diam} Q_{*}^{\prime}$.
Thus, diam $H_{Q^{\prime}} \geq|y-z| \geq 0.99987 \operatorname{diam} Q_{*}^{\prime} \geq 0.99985 \operatorname{diam} D_{Q^{\prime}}$. The lemma follows.
Lemma 4.11. Let $Q \in \mathscr{G}$ and let $T \subset T^{\prime} \in \Gamma_{U_{Q}}^{*}$ be an efficient subarc. If $U_{Q^{\prime}} \in \mathcal{N}_{2.2}(T)$, then there exists a finite set \mathcal{Y} of efficient subarcs of arc fragments in $\Gamma_{F_{Q^{\prime}}}^{*}$ such that the sets $\left\{1.00002 Q_{*}^{\prime}\right\} \cup\left\{B_{2^{-40}} \operatorname{diam} Q_{*}^{\prime}(Y): Y \in \mathcal{Y}\right\}$ are pairwise disjoint, $\operatorname{diam} Y \geq 0.00021 \operatorname{diam} Q_{*}^{\prime}$ for all $Y \in \mathcal{Y}$, and $\sum_{Y \in \mathcal{Y}} \operatorname{diam} Y \geq 22.46 \operatorname{diam} Q_{*}^{\prime}$. (The cardinality of \mathcal{Y} is 3 or 4.)

Proof. Since $U_{Q^{\prime}} \in \mathcal{N}_{2.2}(T)$, we can find a wide arc $\tau \in S\left(\lambda Q^{\prime}\right)$ such that Image (τ) intersects $1.00002 Q_{*}^{\prime}$ and is disjoint from $2^{-14} Q_{*}^{\prime}$. Let $\xi \in S\left(\lambda Q^{\prime}\right)$ be any arc whose image contains the center of Q^{\prime}. Since the image of τ does not contain the center of Q^{\prime}, the $\operatorname{arcs} \tau$ and ξ are distinct. The family \mathcal{Y} will be built from subarcs of Image $(\tau) \cap F_{Q^{\prime}}$ and Image $(\xi) \cap F_{Q^{\prime}}$.

Let A denote the annulus $15.98 Q_{*}^{\prime} \backslash \operatorname{int}\left(1.00004 Q_{*}^{\prime}\right)$, which is contained in $F_{Q^{\prime}}$. Choose a subarc T_{1} of Image $(\xi) \cap A$ with one endpoint on $\partial\left(15.98 Q_{*}^{\prime}\right)$ and one endpoint on $\partial\left(1.00004 Q_{*}^{\prime}\right)$ so that $\operatorname{diam} T_{1} \geq 14.97996$ radius Q_{*}^{\prime}; cf. proof of Lemma 4.5. Similarly,

Figure 4.2. Separated subarcs \mathcal{Y} associated to $\mathcal{N}_{2.2}(T)$-type cores $U_{Q^{\prime}}$. Either $\# \mathcal{Y}=3$ (left) or $\# \mathcal{Y}=4$ (right). The arc T is not displayed.
we may find two subarcs T_{2} and T_{3} of $\operatorname{Image}(\tau) \cap A$ with endpoints in $\partial 15.98 Q_{*}^{\prime} \cap P_{U_{Q^{\prime}}}^{+}$ and $\partial\left(1.00004 Q_{*}^{\prime}\right)$ and endpoints in $\partial\left(15.98 Q_{*}^{\prime}\right) \cap P_{U_{Q^{\prime}}}^{-}$and $\partial\left(1.00004 Q_{*}^{\prime}\right)$, respectively. Observe that $\min \left\{\operatorname{diam} T_{2}\right.$, $\left.\operatorname{diam} T_{3}\right\} \geq 14.97996$ radius Q_{*}^{\prime}, and the total diameter of the three subarcs is at least 44.93988 radius $Q_{*}^{\prime}=22.46994$ diam Q_{*}^{\prime}.

Now, we show that $B_{2^{-40}} \operatorname{diam} Q_{*}^{\prime}\left(T_{2}\right)$ and $B_{2^{-40}} \operatorname{diam} Q_{*}^{\prime}\left(T_{3}\right)$ are disjoint. Let L_{τ} be a line such that (4.1) holds for L_{τ} and all $x \in \operatorname{Image}(\tau)$. In particular,

$$
B_{2^{-40}} \operatorname{diam} Q_{*}^{\prime}\left(T_{2} \cup T_{3}\right) \subset B_{\left(2^{-38}+2^{-40}\right)} \operatorname{diam} Q_{*}^{\prime}\left(L_{\tau}\right) \subset B_{2^{-37}} \operatorname{diam} Q_{*}^{\prime}\left(L_{\tau}\right)
$$

By assumption, Image $(\tau) \cap 1.00002 Q_{*}^{\prime} \neq \emptyset$. Hence there exists $\tilde{w} \in \operatorname{Image}(\tau) \cap 1.00002 Q_{*}^{\prime}$ such that $B\left(\tilde{w}, 0.00002\right.$ radius $\left.Q_{*}^{\prime}\right) \subset 1.00004 Q_{*}^{\prime}$. Let $w \in L_{\tau} \cap B\left(\tilde{w}, 2^{-38} \operatorname{diam} Q_{*}^{\prime}\right)$. Note that $B\left(w, 0.00001\right.$ radius $\left.Q_{*}^{\prime}\right) \subset 1.00004 Q_{*}^{\prime}$. Labeling the two connected components of $L_{\tau} \backslash B\left(w, 0.00001\right.$ radius $\left.Q_{*}^{\prime}\right)$ by $L_{\tau}^{+}, L_{\tau}^{-}$we conclude that

$$
\begin{align*}
& \operatorname{gap}\left(B_{2^{-40}} \operatorname{diam} Q_{*}^{\prime}\left(T_{2}\right), B_{2^{-40}} \operatorname{diam} Q_{*}^{\prime}\left(T_{3}\right)\right) \geq \operatorname{gap}\left(B_{2^{-37}} \operatorname{diam} Q_{*}^{\prime}\left(L_{\tau}^{+}\right), B_{2^{-37} \operatorname{diam} Q_{*}^{\prime}}\left(L_{\tau}^{-}\right)\right) \tag{4.14}\\
& \quad \geq\left(0.00001-2^{-35}\right) \operatorname{diam} Q_{*}^{\prime}>0.000009 \operatorname{diam} Q_{*}^{\prime}
\end{align*}
$$

Observe that for any arc we may shrink its domain as needed to produce an efficient arc of the same diameter. Thus, it remains to obtain a subarc or subarcs of T_{1} which satisfy the disjointness and diameter estimates in the conclusion of the lemma.

Let L_{ξ} be a line such that (4.1) holds with L_{ξ} and all $x \in \operatorname{Image}(\xi)$. As with τ, we have

$$
B_{2^{-40}} \operatorname{diam} Q_{*}^{\prime}\left(T_{1}\right) \subset B_{\left(2^{-38}+2^{-40}\right)} \operatorname{diam} Q_{*}^{\prime}\left(L_{\tau}\right) \subset B_{2^{-37}} \operatorname{diam} Q_{*}^{\prime}\left(L_{\xi}\right) .
$$

If $B_{2^{-40}} \operatorname{diam} Q_{*}^{\prime}\left(T_{1}\right)$ and $B_{2^{-40}} \operatorname{diam} Q_{*}^{\prime}\left(T_{2} \cup T_{3}\right)$ do not intersect, by the previous paragraph we are done. If, on the other hand, $B_{2-40} \operatorname{diam} Q_{*}^{\prime}\left(T_{1}\right)$ and $B_{2^{-40}} \operatorname{diam} Q_{*}^{\prime}\left(L_{\tau}\right)$ intersect, then $B_{2^{-37} \operatorname{diam} Q_{*}^{\prime}}\left(L_{\xi}\right)$ and $B_{2^{-37} \operatorname{diam} Q_{*}^{\prime}}\left(L_{\tau}\right)$ intersect. In this case, we will either shrink T_{1} or split T_{1} into two subarcs to obtain the desired disjointness. See Figure 4.2.

Suppose then that $B_{2^{-37} \operatorname{diam} Q_{*}^{\prime}}\left(L_{\tau}\right)$ intersects $B_{2^{-37} \operatorname{diam} Q_{*}^{\prime}}\left(L_{\xi}\right)$. Then, L_{ξ} intersects $B_{2}:=B_{2^{-35} \operatorname{diam} Q_{*}^{\prime}}\left(L_{\tau}\right)$ by the triangle inequality. Define

$$
r_{1}:=\min \left\{|z-x|: z \in L_{\xi} \cap B_{2}\right\} \quad \text { and } \quad r_{2}:=\max \left\{|z-x|: z \in L_{\xi} \cap B_{2}\right\},
$$

where as before x denotes the center of Q^{\prime}. Our goal is to show that $r_{2}-r_{1}$ is relatively small. There are two cases.

For the easier case, suppose that $r_{2} \leq 1.00054$ radius Q_{*}^{\prime} or $r_{1} \geq 15.9795$ radius Q_{*}^{\prime}. Replace T_{1} with a subarc \tilde{T}_{1} using the annulus $15.97949 Q_{*}^{\prime} \backslash \operatorname{int}\left(1.00055 Q_{*}^{\prime}\right)$ instead of A. Then $\operatorname{diam} \tilde{T}_{1} \geq 14.97894$ radius Q_{*}^{\prime} and $\operatorname{diam} \tilde{T}_{1}+\operatorname{diam} T_{2}+\operatorname{diam} T_{3} \geq 22.46943 \operatorname{diam} Q_{*}^{\prime}$. Furthermore, because $\tilde{T}_{1} \subset T_{1}$ and \tilde{T}_{1} avoids $\left\{w:|w-x| \in\left[r_{1}, r_{2}\right]\right\}$,

$$
\begin{aligned}
& \operatorname{gap}\left(B_{2^{-40} \operatorname{diam} Q_{*}^{\prime}}\left(\tilde{T}_{1}\right), B_{2^{-40}} \operatorname{diam} Q_{*}^{\prime}\left(T_{2} \cup T_{3}\right)\right) \\
& \quad \geq \operatorname{gap}\left(B_{2^{-37} \operatorname{diam} Q_{*}^{\prime}}\left(L_{\xi} \cap\left(15.97949 Q_{*}^{\prime} \backslash \operatorname{int}\left(1.00055 Q_{*}^{\prime}\right)\right), B_{2^{-37} \operatorname{diam} Q_{*}^{\prime}}\left(L_{\tau}\right)\right)\right. \\
& \quad \geq\left(0.00001-2^{-36}\right) \operatorname{diam} Q_{*}^{\prime}>0 .
\end{aligned}
$$

Thus, the neighborhoods $B_{2^{-40}} \operatorname{diam} Q_{*}^{\prime}\left(\tilde{T}_{1}\right)$ and $B_{2^{-40}} \operatorname{diam} Q_{*}^{\prime}\left(T_{2} \cup T_{3}\right)$ are disjoint.
For the harder case, suppose that

$$
\begin{equation*}
r_{2}>1.00054 \text { radius } Q_{*}^{\prime} \text { and } \quad r_{1}<15.9795 \text { radius } Q_{*}^{\prime} . \tag{4.15}
\end{equation*}
$$

Let $y \in L_{\xi} \cap B_{2} \cap \partial B\left(x, r_{1}\right)$. Let $z \in L_{\xi} \cap B_{2} \cap \partial B\left(x, r_{2}\right)$. By translation, we may replace L_{τ} with a line (which we relabel as L_{τ}) such that $y \in L_{\xi} \cap L_{\tau}$. Since we translate by at most $2^{-35} \operatorname{diam} Q_{*}^{\prime}$, the triangle inequality implies that $B_{2^{-40}}(\operatorname{Image}(\tau)) \subset B_{2^{-34}} \operatorname{diam} Q_{*}^{\prime}\left(L_{\tau}\right)$ and

$$
\operatorname{dist}\left(x, L_{\tau}\right) \geq \operatorname{dist}(x, \operatorname{Image}(\tau))-\sup _{w \in \operatorname{Image}(\tau)} \operatorname{dist}\left(w, L_{\tau}\right) \geq\left(2^{-15}-2^{-34}\right) \operatorname{diam} Q_{*}^{\prime} .
$$

Now, choose J-projections Π_{ξ} and Π_{τ} onto L_{ξ} and (the relabeled line) L_{τ}, respectively. Then the points $x_{\xi}:=\Pi_{\xi}(x), x_{\xi \tau}:=\Pi_{\tau}\left(x_{\xi}\right)$, and $z_{\tau}:=\Pi_{\tau}(z)$ satisfy:

$$
\begin{align*}
\left|x_{\xi}-x_{\xi \tau}\right| & \geq\left|x-x_{\xi \tau}\right|-\left|x-x_{\xi}\right| \geq\left(2^{-15}-2^{-34}\right) \operatorname{diam} Q_{*}^{\prime}, \tag{4.16}\\
\left|x_{\xi}-y\right| & \leq|x-y|+\left|x-x_{\xi}\right| \leq 15.9795 \text { radius } Q_{*}^{\prime}+2^{-38} \operatorname{diam} Q_{*}^{\prime}<2^{3} \operatorname{diam} Q_{*}^{\prime} \tag{4.17}\\
|z-y| & \geq|z-x|-|x-y| \geq r_{2}-r_{1}, \text { and } \tag{4.18}\\
\left|z-z_{\tau}\right| & \leq 2 \operatorname{dist}\left(z, L_{\tau}\right) \leq 2^{-33} \operatorname{diam} Q_{*}^{\prime} . \tag{4.19}
\end{align*}
$$

By "similar triangles", it follows that

$$
\begin{equation*}
r_{2}-r_{1} \leq|z-y|=\left|x_{\xi}-y\right| \frac{\left|z-z_{\tau}\right|}{\left|x_{\xi}-x_{\xi \tau}\right|} \leq\left(2^{3} \operatorname{diam} Q_{*}^{\prime}\right) \frac{2^{-33}}{2^{-15}-2^{-34}} \tag{4.20}
\end{equation*}
$$

Hence $r_{2}-r_{1}<2^{-14} \operatorname{diam} Q_{*}^{\prime}$.
Since ξ contains x and (4.1) is in effect we may translate L_{ξ} (by at most $2^{-38} \operatorname{diam} Q_{*}^{\prime}$) to obtain a line \tilde{L}_{ξ} which contains x. Thus, each component of $\tilde{L}_{\xi} \cap B\left(x, r_{2}\right) \backslash B\left(x, r_{1}\right)$ has diameter $r_{2}-r_{1}$. By (4.1), and (4.15), and the triangle inequality, we estimate that each component $L_{\xi}^{ \pm}$of $L_{\xi} \cap\left(B_{r_{2}}(x) \backslash B_{r_{1}}(x)\right)$ satisfies

$$
\operatorname{diam} L_{\xi}^{ \pm} \leq r_{2}-r_{1}+2^{-37} \operatorname{diam} Q_{*}^{\prime} \leq\left(2^{-14}+2^{-37}\right) \operatorname{diam} Q_{*}^{\prime}
$$

In particular, $\operatorname{diam} B_{2^{-35} \operatorname{diam} Q_{*}^{\prime}}\left(L_{\xi}^{ \pm} \cap\left(B_{r_{2}}(x) \backslash B_{r_{1}}(x)\right)\right) \leq\left(2^{-14}+2^{-34}+2^{-37}\right) \operatorname{diam} Q_{*}^{\prime} \leq$ $0.000062 \mathrm{diam} Q_{*}^{\prime}$. This estimate, and the assumption 4.15 imply that we may choose radii \tilde{r}_{1} and \tilde{r}_{2} such that

$$
1.00047 \text { radius } Q_{*}^{\prime}<\tilde{r}_{1}<r_{1}<r_{2}<\tilde{r}_{2}<15.97957 \text { radius } Q_{*}^{\prime}
$$

and $\tilde{r}_{2}-\tilde{r}_{1}=0.00007$ radius Q_{*}^{\prime}. Let $\tilde{T}_{1.1}$ be a subarc of $T_{1} \cap B\left(x, \tilde{r}_{1}\right) \backslash \operatorname{int}\left(1.00005 Q_{*}^{\prime}\right)$ with one endpoint in $\partial\left(1.00005 Q_{*}^{\prime}\right)$ and one endpoint in $\partial B\left(x, \tilde{r}_{1}\right)$. Define $\tilde{T}_{1.2}$ similarly using the annulus $15.97999 Q_{*}^{\prime} \backslash \operatorname{int}\left(B\left(x, \tilde{r}_{2}\right)\right)$.

We now demonstrate that the neighborhoods $B_{2^{-40}} \operatorname{diam} Q_{*}^{\prime}\left(\tilde{T}_{1.1}\right), B_{2^{-40}} \operatorname{diam} Q_{*}^{\prime}\left(\tilde{T}_{1.2}\right)$, and $B_{2^{-40} \operatorname{diam} Q_{*}^{\prime}}\left(T_{2} \cup T_{3}\right)$ are pairwise disjoint. First, note that

$$
\begin{aligned}
& \operatorname{gap}\left(B_{2^{-40}} \operatorname{diam} Q_{*}^{\prime}\left(\tilde{T}_{1.1}\right), B_{2^{-40}} \operatorname{diam} Q_{*}^{\prime}\left(\tilde{T}_{1.2}\right)\right) \\
& \quad \geq \operatorname{gap}\left(B_{3^{-37}}\left(L_{\xi} \cap B\left(x, \tilde{r}_{1}\right)\right), B_{3-37}\left(L_{\xi} \cap B\left(x, \tilde{r}_{2}\right)^{c}\right)\right) \geq\left(0.00007-2^{-36}\right) \operatorname{diam} Q_{*}^{\prime}>0
\end{aligned}
$$

Thus, the neighborhoods $B_{2^{-40}} \operatorname{diam} Q_{*}^{\prime}\left(\tilde{T}_{1.1}\right)$ and $B_{2^{-40}} \operatorname{diam} Q_{*}^{\prime}\left(\tilde{T}_{1.2}\right)$ are pairwise disjoint. They are also pairwise disjoint from $B_{2-40} \operatorname{diam} Q_{*}^{\prime}\left(T_{2} \cup T_{3}\right)$, because

$$
\begin{aligned}
& \operatorname{gap}\left(B_{2^{-40}} \operatorname{diam} Q_{*}^{\prime}\left(\tilde{T}_{1.1} \cup \tilde{T}_{1.2}\right), B_{2^{-40}} \operatorname{diam} Q_{*}^{\prime}\left(T_{2} \cup T_{3}\right)\right) \\
& \quad \geq \operatorname{gap}\left(B_{2^{-37}}\left(L_{\xi} \cap\left(B\left(x, \tilde{r}_{1}\right) \cup B\left(x, \tilde{r}_{2}\right)^{c}\right)\right), B_{2^{-37}} \operatorname{diam} Q_{*}^{\prime}\left(L_{\tau}\right)\right) \\
& \quad \geq\left(2^{-35}-2^{-36}\right) \operatorname{diam} Q_{*}^{\prime}>0 .
\end{aligned}
$$

By definition of $\tilde{r}_{1}, \tilde{r}_{2}, \min \left\{\operatorname{diam} \tilde{T}_{1.1}, \operatorname{diam} \tilde{T}_{1.2}\right\} \geq 0.00042$ radius $Q_{*}^{\prime}=0.00021 \operatorname{diam} Q_{*}^{\prime}$ and $\operatorname{diam} \tilde{T}_{1.1}+\operatorname{diam} \tilde{T}_{1.2} \geq(15.97999-1.00005-0.00007)$ radius $Q_{*}^{\prime}=14.97987$ radius Q_{*}^{\prime}. Thus, $\operatorname{diam} \tilde{T}_{1.1}+\operatorname{diam} \tilde{T}_{1.2}+\operatorname{diam} T_{2}+\operatorname{diam} T_{3} \geq 22.46989 \operatorname{diam} Q_{*}^{\prime}$. This concludes the proof of the lemma.

Lemma 4.12. Let $Q \in \mathscr{G}$ and let $T \subset T^{\prime} \in \Gamma_{U_{Q}}^{*}$ be an efficient subarc. If $U_{Q^{\prime}} \in \mathcal{N}_{2.2}(T)$, then there is a family $\mathcal{M}_{Q^{\prime}}$ of cores $U_{Q^{\prime \prime}}$ with $Q^{\prime \prime} \in \operatorname{Child}(Q)$ and $U_{Q^{\prime \prime}} \cap F_{Q^{\prime}} \neq \emptyset$ such that

$$
\begin{equation*}
\operatorname{diam} D_{Q^{\prime}}<0.7 \ell\left(R_{Q} \cap F_{Q^{\prime}}\right)+1.37 \sum_{U_{Q^{\prime \prime}} \in \mathcal{M}_{Q^{\prime}}} \operatorname{diam} H_{Q^{\prime \prime}} \tag{4.21}
\end{equation*}
$$

Proof. Given \mathcal{Y} from Lemma 4.11, let $\mathcal{M}_{Q^{\prime}}=\left\{U_{Q^{\prime \prime}}: Q^{\prime \prime} \in \operatorname{Child}(Q), U_{Q^{\prime \prime}} \cap F_{Q^{\prime}} \neq \emptyset\right\}$. If there happens to exist $U_{Q^{\prime \prime}} \in \mathcal{M}_{Q^{\prime}}$ with $\operatorname{diam} Q^{\prime \prime}>\operatorname{diam} Q^{\prime}$, then

$$
\operatorname{diam} H_{Q^{\prime \prime}} \geq 0.49999 \operatorname{diam} Q_{*}^{\prime \prime} \geq 2^{98} \operatorname{diam} Q_{*}^{\prime} \gg \operatorname{diam} D_{Q^{\prime}}
$$

and (4.21) holds trivially. Assume otherwise that $\operatorname{diam} Q^{\prime \prime} \leq \operatorname{diam} Q^{\prime}$ for every core $U_{Q^{\prime \prime}} \in \mathcal{M}_{Q^{\prime}}$, so that $\operatorname{diam} U_{Q^{\prime \prime}} \leq 2^{-98} \operatorname{diam} Q_{*}^{\prime}$ for all $U_{Q^{\prime \prime}} \in \mathcal{M}_{Q^{\prime}} \backslash\left\{U_{Q^{\prime}}\right\}$. Because $\operatorname{diam} Q_{*}^{\prime} \leq 2.00002$ diam $H_{Q^{\prime}}$ and (3.6) holds for each $Y \in \mathcal{Y}$, Lemma 4.11 implies that

$$
\begin{equation*}
(1+22.46) \operatorname{diam} Q_{*}^{\prime} \leq \ell\left(R_{Q} \cap F_{Q^{\prime}}\right)+2.00002 \sum_{U_{Q^{\prime \prime}} \in \mathcal{M}_{Q^{\prime}}} \operatorname{diam} H_{Q^{\prime \prime}} \tag{4.22}
\end{equation*}
$$

Since $\operatorname{diam} D_{Q^{\prime}}=16 \operatorname{diam} Q_{*}^{\prime}$, this estimate yields 4.21.

4.4. Geometry of unnecessary cores.

Definition 4.13. Let Π_{T} be a J-projection onto some line L_{T} in \mathbb{X}. For any line L in \mathbb{X}, the antislope as $\left(L, \Pi_{T}\right)$ of L relative to Π_{T} is the unique number in $[0,1]$ given by

$$
\begin{equation*}
\operatorname{as}\left(L, \Pi_{T}\right)=\frac{\left|\Pi_{T}(u)-\Pi_{T}(v)\right|}{|u-v|} \quad \text { for any } u, v \in L \text { with } u \neq v \tag{4.23}
\end{equation*}
$$

Remark 4.14. The antislope as $\left(L, \Pi_{T}\right)$ is well-defined (i.e. the quantity in (4.23) does not depend on the choice of points $u, v)$ by linearity of J-projections onto linear subspaces. At one extreme, as $\left(L, \Pi_{T}\right)=0$ if and only if L is vertical in the sense that $\Pi_{T}(u)=\Pi_{T}(v)$ for every $u, v \in L$. At the other extreme, as $\left(L, \Pi_{T}\right)=1$ if and only if L is parallel to L_{T}.

Lemma 4.15 (location of endpoints). Let $Q \in \mathscr{G}$ and let $T=f([a, b]) \subset T^{\prime} \in \Gamma_{U_{Q}}^{*}$ be an efficient subarc. If $Q^{\prime} \in \operatorname{Child}(Q)$ and $1.00002 Q_{*}^{\prime} \cap T \neq \emptyset$, but the core $U_{Q^{\prime}}$ is "unnecessary" in the sense that $U_{Q^{\prime}} \notin \mathcal{N}(T)=\mathcal{N}_{1}(T) \cup \mathcal{N}_{2}(T)$, then for all arcs $\tau=\left.f\right|_{[c, d]} \in S\left(\lambda Q^{\prime}\right)$ such that $\operatorname{Image}(\tau) \cap 1.00002 Q_{*}^{\prime} \neq \emptyset$,

$$
\text { either }\{f(c), f(d)\} \subset P_{15 Q_{*}^{\prime}}^{+} \cap \partial\left(2 \lambda Q^{\prime}\right) \quad \text { or } \quad\{f(c), f(d)\} \subset P_{15 Q_{*}^{\prime}}^{-} \cap \partial\left(2 \lambda Q^{\prime}\right)
$$

moreover, if L is any line such that (4.1) holds for τ, then as $\left(L, \Pi_{T}\right)>0.001$.
Proof. Let Q^{\prime} be given as in the statement. Fix any $\tau=\left.f\right|_{[c, d]} \in S\left(\lambda Q^{\prime}\right)$. Because $Q^{\prime} \notin \mathscr{B}_{0}^{\lambda}$ (see Lemma 3.2), the endpoints $f(c)$ and $f(d)$ of τ lie on $\partial\left(2 \lambda Q^{\prime}\right)$. Since $U_{Q^{\prime}} \notin \mathcal{N}_{1}(T)$, we know that $f(c), f(d) \notin P_{1.01 Q_{*}^{\prime}}$. Suppose without loss of generality that $f(c) \in P_{1.01 Q_{*}^{\prime}}^{+}$ (see Remark 3.7). Since $U_{Q^{\prime}} \notin \mathcal{N}_{2}(T)$, we have $f(d) \in P_{1.01 Q_{*}^{\prime}}^{+}$, as well. To complete the proof, it suffices to show that $f(c), f(d) \notin P_{15 Q_{*}^{\prime}}$.

Let L be a line such that (4.1) holds for τ. Since Image $(\tau) \cap 1.00002 Q_{*}^{\prime} \neq \emptyset$, it follows that $L \cap 1.000021 Q_{*}^{\prime} \neq \emptyset$. Choose any $u \in L \cap 1.000021 Q_{*}^{\prime}$. Similarly, let $x \in \operatorname{Image}(\tau) \cap \partial\left(4 Q_{*}^{\prime}\right)$. Since τ is not tall, $x \notin P_{1.01 Q_{*}^{\prime}}$. Thus, by (4.1), there exists $v \in L \cap 4.00001 Q_{*}^{\prime} \cap P_{1.00999 Q_{*}^{\prime}}^{+}$. Finally, choose $w \in L$ such that $|w-f(c)| \leq 2^{-38} \operatorname{diam} Q_{*}^{\prime}$. This more than guarantees $w \in \mathbb{X} \backslash\left(2^{13} \lambda A_{\mathscr{H}}-1\right) Q_{*}^{\prime} \subset \mathbb{X} \backslash 8191 Q_{*}^{\prime}$. Now,

$$
\begin{aligned}
\left|\Pi_{T}(w)-\Pi_{T}(u)\right|=|w-u| \frac{\left|\Pi_{T}(v)-\Pi_{T}(u)\right|}{|v-u|} & \geq\left(8189 \text { radius } Q_{*}^{\prime}\right) \frac{1.00999-1.000021}{4.00001+1.000021} \\
& \geq 16.01697 \text { radius } Q_{*}^{\prime}
\end{aligned}
$$

Hence w lies outside of $P_{15.01676 Q_{*}^{\prime}}$, and therefore, $f(c)$ certainly lies outside of $P_{15 Q_{*}^{\prime}}$. An identical argument shows that $f(d)$ lies outside of $P_{15 Q_{*}^{\prime}}$, as well. Finally, from the display, we read off as $\left(L ; \Pi_{T}\right) \geq(1.00999-1.000021) /(4.00001+1.000021)=0.00199 \ldots$.

Lemma 4.16 (overlapping arcs). Let $Q \in \mathscr{G}$ and let $T=f([a, b]) \subset T^{\prime} \in \Gamma_{U_{Q}}^{*}$ be an efficient subarc. Let $Q^{\sigma}, Q^{\tau} \in \operatorname{Child}(Q)$ with $\operatorname{diam} Q^{\sigma} \leq \operatorname{diam} Q^{\tau}$ and suppose that there is a point $x \in \Pi_{T}\left(1.00002 Q_{*}^{\sigma} \cap T\right) \cap \Pi_{T}\left(1.00002 Q_{*}^{\tau} \cap T\right)$, but $U_{Q^{\sigma}}, U_{Q^{\tau}} \notin \mathcal{N}(T)$. For any arcs $\sigma \in S\left(\lambda Q^{\sigma}\right)$ and $\tau \in S\left(\lambda Q^{\tau}\right)$ such that Domain (σ), Domain $(\tau) \subset[a, b]$, $x \in \Pi_{T}(\operatorname{Image}(\sigma)) \cap \Pi_{T}(\operatorname{Image}(\tau))$, and $\operatorname{Domain}(\sigma) \cap \operatorname{Domain}(\tau) \neq \emptyset$, either
(i) $\operatorname{diam} Q^{\sigma}<\operatorname{diam} Q^{\tau}$ and $\operatorname{Domain}(\sigma) \subset \operatorname{Domain}(\tau)$, or
(ii) $\operatorname{diam} Q^{\sigma}=\operatorname{diam} Q^{\tau}$ and $[c, d]:=\operatorname{Domain}(\sigma) \cup \operatorname{Domain}(\tau)$ satisfies

$$
\text { either } \quad\{f(c), f(d)\} \subset P_{12 Q_{*}^{\sigma}}^{+} \cap P_{12 Q_{*}^{\tau}}^{+} \quad \text { or } \quad\{f(c), f(d)\} \subset P_{12 Q_{*}^{\sigma}}^{-} \cap P_{12 Q_{*}^{\tau}}^{-} .
$$

Proof. Firstly, suppose that $\operatorname{diam} Q^{\sigma}<\operatorname{diam} Q^{\tau}$. Let x_{σ} denote the center of Q^{σ} and pick $y_{\sigma} \in 1.00002 Q_{*}^{\sigma} \cap \operatorname{Image}(\sigma) \cap P_{x}$. Here P_{x} is shorthand for $P_{\{x\}}$ (see Remark 3.7). Then, for any $z_{\sigma} \in \operatorname{Image}(\sigma) \subset 2 \lambda Q^{\sigma}$,

$$
\begin{aligned}
\left|\Pi_{T}\left(z_{\sigma}\right)-x\right| & \leq\left|z_{\sigma}-y_{\sigma}\right| \leq\left|z_{\sigma}-x_{\sigma}\right|+\left|x_{\sigma}-y_{\sigma}\right| \\
& \leq\left(1+1.00002 \cdot 2^{-13}\right) \text { radius } 2 \lambda Q^{\sigma} \leq 2^{-99} A_{\mathscr{H}}^{-1} \text { radius } 2 \lambda Q^{\tau} \leq 2^{-83} \text { radius } Q_{*}^{\tau} .
\end{aligned}
$$

Thus, $f(t) \in P_{2 Q_{*}^{\tau}}$ for all $t \in \operatorname{Domain}(\sigma)$. However, the endpoints $\operatorname{Start}(\tau), \operatorname{End}(\tau) \notin P_{15 Q_{*}^{\tau}}$ by Lemma 4.15. Therefore, Domain $(\sigma) \cap \operatorname{Domain}(\tau) \neq \emptyset$ implies Domain $(\sigma) \subset$ Domain (τ).

Secondly, suppose that $\operatorname{diam} Q^{\sigma}=\operatorname{diam} Q^{\tau}$ and $Q^{\sigma}=Q^{\tau}$. Since the arcs in $\Lambda\left(\lambda Q^{\tau}\right)$ have pairwise disjoint domains (see Definition 1.9), Domain $(\sigma) \cap \operatorname{Domain}(\tau)$ implies $\sigma=\tau$. Hence the conclusion in this case follows from Lemma 4.15,

Finally, suppose that $\operatorname{diam} Q^{\sigma}=\operatorname{diam} Q^{\tau}$, but $Q^{\sigma} \neq Q^{\tau}$. Let x_{σ}, y_{σ} be given as above; similarly, let x_{τ} denote the center of Q^{τ} and choose $y_{\tau} \in 1.00002 Q_{*}^{\tau} \cap \operatorname{Image}(\tau) \cap P_{x}$. Using the triangle inequality to form nested balls centered at x_{σ} and y_{σ} and nested balls centered at x_{τ} and y_{τ}, plus the fact that radius $\Pi_{T}(B)=$ radius B for any ball B, one can show that

$$
\begin{equation*}
P_{15 Q_{*}^{\tau}}^{ \pm} \subset P_{(15-2.00004) Q_{*}^{\sigma}}^{ \pm} \subset P_{12 Q_{*}^{\sigma}}^{ \pm} \quad \text { and } \quad P_{15 Q_{*}^{\sigma}}^{ \pm} \subset P_{(15-2.00004) Q_{*}^{\tau}}^{ \pm} \subset P_{12 Q_{*}^{\tau}}^{ \pm} . \tag{4.24}
\end{equation*}
$$

Let $\left[c_{\sigma}, d_{\sigma}\right]$ and $\left[c_{\tau}, d_{\tau}\right]$ denote the domains of σ and τ, respectively. If it happens that $\left[c_{\sigma}, d_{\sigma}\right] \subset\left[c_{\tau}, d_{\tau}\right]$ or $\left[c_{\tau}, d_{\tau}\right] \subset\left[c_{\sigma}, d_{\sigma}\right]$ or $d_{\sigma}=c_{\tau}$ or $d_{\tau}=c_{\sigma}$, then the conclusion follows immediately from Lemma 4.15 and 4.24). Thus, without loss of generality, we may focus on the case that $c=c_{\sigma}<c_{\tau}<d_{\sigma}<d_{\tau}=d$ and $\operatorname{Start}(\sigma), \operatorname{End}(\sigma) \in P_{15 Q_{*}^{\sigma}}^{-} \subset P_{12 Q_{*}^{\sigma}}^{-}$. Suppose to reach a contradiction that $\operatorname{Start}(\tau), \operatorname{End}(\tau) \in P_{15 Q_{*}^{\tau}}^{+} \subset P_{12 Q_{*}^{\sigma}}^{+}$. We will show that this violates the antislope estimate in Lemma 4.15. Since $\operatorname{diam} Q^{\sigma}=\operatorname{diam} Q^{\tau}$, but $Q^{\sigma} \neq Q^{\tau}$, the centers of the balls are far apart: $\left|x_{\sigma}-x_{\tau}\right| \geq 2^{-k}$, where $k \in \mathbb{Z}$ is the unique integer determined by $Q_{*}^{\sigma}=B\left(x_{\sigma}, 2^{-12-k}\right)$. Since $\left|x_{\sigma}-y_{\sigma}\right| \leq 1.00002 \cdot 2^{-12-k}$ and $\left|x_{\tau}-y_{\tau}\right| \leq 1.00002 \cdot 2^{-12-k}$, the triangle inequality gives $\left|y_{\sigma}-y_{\tau}\right| \geq\left(1-1.00002 \cdot 2^{-11}\right) 2^{-k}$.

To continue, write

$$
[c, d]=\underbrace{\left[c_{\sigma}, c_{\tau}\right]}_{I_{1}} \cup \underbrace{\left[c_{\tau}, d_{\sigma}\right]}_{I_{2}} \cup \underbrace{\left[d_{\sigma}, d_{\tau}\right]}_{I_{3}} .
$$

Choose $t_{\sigma} \in \operatorname{Domain}(\sigma)$ and $t_{\tau} \in \operatorname{Domain}(\tau)$ such that $f\left(t_{\sigma}\right)=y_{\sigma}$ and $f\left(t_{\tau}\right)=y_{\tau}$. There are three (sub) cases, depending on which of the intervals I_{1}, I_{2}, I_{3} contain t_{σ} and t_{τ}.

Case 1. Assume that $t_{\sigma}, t_{\tau} \in I_{1} \cup I_{2}=\left[c_{\sigma}, d_{\sigma}\right]=\operatorname{Domain}(\sigma)$. Choose a line L such that (4.1) holds for σ and let Π_{L} be any J-projection onto L. Since $y_{\sigma}, y_{\tau} \in \operatorname{Image}(\sigma)$, their projections $w_{\sigma}:=\Pi_{L}\left(y_{\sigma}\right)$ and $w_{\tau}:=\Pi_{L}\left(y_{\tau}\right)$ satisfy $\max \left\{\left|w_{\sigma}-y_{\sigma}\right|,\left|w_{\tau}-y_{\tau}\right|\right\} \leq 2^{-49-k}$ by (4.1) and (4.4). Hence the estimate on $\left|y_{\sigma}-y_{\tau}\right|$ from above and the triangle inequality yields $\left|w_{\sigma}-w_{\tau}\right| \geq\left(1-2^{-10}\right) 2^{-k}$. Since $\Pi_{T}\left(y_{\sigma}\right)=x=\Pi_{T}\left(y_{\tau}\right)$ and Π_{T} is 1-Lipschitz, we
also have $\left|\Pi_{T}\left(w_{\sigma}\right)-\Pi_{T}\left(w_{\tau}\right)\right| \leq\left|w_{\sigma}-y_{\sigma}\right|+\left|w_{\tau}-y_{\tau}\right| \leq 2^{-48-k}$. It follows that

$$
\operatorname{as}\left(L, \Pi_{T}\right)=\frac{\left|\Pi_{T}\left(w_{\sigma}\right)-\Pi_{T}\left(w_{\tau}\right)\right|}{\left|w_{\sigma}-w_{\tau}\right|} \leq \frac{2^{-48-k}}{\left(1-2^{-10}\right) 2^{-k}}<0.000000000000004
$$

This (radically!) contradicts the antislope estimate for L from Lemma 4.15.
Case 2. Assume that $t_{\sigma}, t_{\tau} \in I_{2} \cup I_{3}=\left[c_{\tau}, d_{\tau}\right]=\operatorname{Domain}(\tau)$. Repeat the argument from Case 1 using an approximating line L for τ instead of an approximating line L for σ.

Case 3. Assume that $t_{\sigma} \in I_{1}$ and $t_{\tau} \in I_{3}$. By our supposition above, $I_{2}=\left[c_{\tau}, d_{\sigma}\right]$ satisfies $f\left(c_{\tau}\right) \in P_{12 Q_{*}^{\sigma}}^{+}$and $f\left(d_{\sigma}\right) \in P_{12 Q_{*}^{\sigma}}^{-}$. Because $x \in P_{1.00002 Q_{*}^{\sigma}}$ and $\Pi_{T} \circ f$ is continuous, the intermediate value theorem produces $t^{\prime} \in\left(c_{\tau}, d_{\sigma}\right) \subset \operatorname{Domain}(\sigma) \cap \operatorname{Domain}(\tau)$ such that $\Pi_{T}\left(f\left(t^{\prime}\right)\right)=x$. Write $y^{\prime}:=f\left(t^{\prime}\right) \in \operatorname{Image}(\sigma) \cap \operatorname{Image}(\tau)$. Because $\left|y_{\sigma}-y_{\tau}\right|>0.98 \cdot 2^{-k}$, the metric pigeon hole principle implies that $\left|y_{\sigma}-y^{\prime}\right|>0.49 \cdot 2^{-k}$ or $\left|y_{\tau}-y^{\prime}\right|>0.49 \cdot 2^{-k}$, say without loss of generality that $\left|y_{\sigma}-y^{\prime}\right|>0.49 \cdot 2^{-k}$. As in Case 1 , choose any line L such that (4.1) holds for σ and let Π_{L} be any J-projection onto L. Since $y^{\prime} \in \operatorname{Image}(\sigma)$, its projection $w^{\prime}:=\Pi_{L}\left(y^{\prime}\right)$ satisfies $\left|w^{\prime}-y^{\prime}\right| \leq 2^{-49-k}$. Hence

$$
\left|w_{\sigma}-w^{\prime}\right| \geq\left|y_{\sigma}-y^{\prime}\right|-\left|w_{\sigma}-y_{\sigma}\right|-\left|w^{\prime}-y^{\prime}\right|>0.48 \cdot 2^{-k} .
$$

Since $\Pi_{T}\left(y_{\sigma}\right)=x=\Pi_{T}\left(y^{\prime}\right)$, we again find that $\left|\Pi_{T}\left(w_{\sigma}\right)-\Pi_{T}\left(w^{\prime}\right)\right| \leq\left|w_{\sigma}-y_{\sigma}\right|+\left|w^{\prime}-y^{\prime}\right| \leq$ 2^{-48-k}. This time it follows that

$$
\operatorname{as}\left(L, \Pi_{T}\right)=\frac{\left|\Pi_{T}\left(w_{\sigma}\right)-\Pi_{T}\left(w^{\prime}\right)\right|}{\left|w_{\sigma}-w^{\prime}\right|}<\frac{2^{-48-k}}{0.48 \cdot 2^{-k}}<0.000000000000008
$$

This (again!) contradicts the antislope estimate for L from Lemma 4.15.
Remark 4.17. In Lemma 4.16, intersection of $\operatorname{Domain}(\sigma)$ and $\operatorname{Domain}(\tau)$ in the case $\operatorname{diam} Q^{\sigma}=\operatorname{diam} Q^{\tau}$, but $Q^{\sigma} \neq Q^{\tau}$ is possible. For example, consider $\mathbb{X}=\ell_{\infty}^{2}=\left(\mathbb{R}^{2},|\cdot|_{\infty}\right)$, L_{T} horizontal, Π_{T} the vertical projection onto L_{T}, and stack two squares $2 \lambda Q^{\sigma}$ and $2 \lambda Q^{\tau}$ whose centers lie on a common vertical line P_{x} with $x \in L_{T}$. Then one can easily draw a picture where $U_{Q^{\sigma}}, U_{Q^{\tau}} \notin \mathcal{N}(T)$ and $\operatorname{End}(\sigma)=\operatorname{Start}(\tau) \in \partial\left(2 \lambda Q^{\sigma}\right) \cap \partial\left(2 \lambda Q^{\tau}\right)$.

5. Necessary and sufficient cores

Imagine (or see $\$ 6$) that you want to "pay for" $\operatorname{diam} T=\mathcal{H}^{1}\left(\Pi_{T}(T)\right.$) for some efficient subarc $T \subset T^{\prime} \in \Gamma_{U_{Q}}^{*}$ using $\ell\left(R_{Q}\right)$ and $\left\{\operatorname{diam} H_{Q^{\prime \prime}}: Q^{\prime \prime} \in \operatorname{Child}(Q)\right\}$. The length $\ell\left(R_{Q}\right)$ pays for $\mathcal{H}^{1}\left(\Pi_{T}\left(R_{Q}\right)\right)$, because Π_{T} is 1-Lipschitz. We will pay for the remaining balance $\mathcal{H}^{1}\left(\Pi_{T}(T) \backslash \Pi_{T}\left(R_{Q}\right)\right)$ in installments. Loosely speaking, given a point $x \in \Pi_{T}(T) \backslash \Pi_{T}\left(R_{Q}\right)$, if we can locate a core $U_{Q^{\prime}} \in \mathcal{N}_{1}(T) \cup \mathcal{N}_{2}(T)$ whose shadow $\Pi_{T}\left(U_{Q^{\prime}}\right)$ contains x, then we can use Lemma 4.7, 4.10, or 4.12 to pay for $\mathcal{H}^{1}\left(\Pi_{T}\left(D_{Q^{\prime}}\right)\right)$ using $\left\{\operatorname{diam} H_{Q^{\prime \prime}}: U_{Q^{\prime \prime}} \cap F_{Q^{\prime}} \neq \emptyset\right\}$. A worry that we might have is that there exists an exceptional point $x \in \Pi_{T}(T) \backslash \Pi_{T}\left(R_{Q}\right)$, which is not contained in the shadow of a core in $\mathcal{N}_{1}(T) \cup \mathcal{N}_{2}(T)$. Another concern is that some core $U_{Q^{\prime \prime}}$ intersecting $F_{Q^{\prime}}$ could have $\operatorname{diam} Q^{\prime \prime}>\operatorname{diam} Q^{\prime}$, in which case $U_{Q^{\prime \prime}} \not \subset E_{Q^{\prime}}$. This section ensures that we can effectively ignore these situations.

For the definitions of \mathcal{N}_{1} and \mathcal{N}_{2} cores, see Definition 3.8. For the definitions of the neighborhoods $D_{Q^{\prime}}, E_{Q^{\prime}}$, and $F_{Q^{\prime}}$ associated to cores $U_{Q^{\prime}}$, see Definitions 4.4 and 4.9.

Definition 5.1. Let $Q \in \mathscr{G}$ and let $T \subset T^{\prime} \in \Gamma_{U_{Q}}^{*}$ be an efficient subarc. We say that a core $U_{Q^{\prime}} \in \mathcal{N}(T)=\mathcal{N}_{1}(T) \cup \mathcal{N}_{2}(T)$ is locally maximal if $Q^{\prime \prime} \in \operatorname{Child}(Q) \backslash\left\{Q^{\prime}\right\}$ and $U_{Q^{\prime \prime}} \cap 16 Q_{*}^{\prime} \neq \emptyset$ implies $\operatorname{diam} Q^{\prime \prime}<\operatorname{diam} Q^{\prime}$.

Remark 5.2. Every core $U_{Q^{\prime}} \in \mathcal{N}(T)$ with $\operatorname{diam} Q^{\prime}=2^{-K M} \operatorname{diam} Q$ is locally maximal by Remark 2.6 and the fact that there do not exist $Q^{\prime \prime} \in \operatorname{Child}(Q)$ with $\operatorname{diam} Q^{\prime \prime}>\operatorname{diam} Q^{\prime}$.

Lemma 5.3. Let $Q \in \mathscr{G}$ and let $T \subset T^{\prime} \in \Gamma_{U_{Q}}^{*}$ be an efficient subarc. If $U_{Q^{\prime}} \in \mathcal{N}(T)$ is locally maximal, then $Q^{\prime \prime} \in \operatorname{Child}(Q)$ and $U_{Q^{\prime \prime}} \cap F_{Q^{\prime}} \neq \emptyset$ implies $U_{Q^{\prime \prime}} \subset E_{Q^{\prime}}$. In particular, if $U_{Q^{\prime}} \in \mathcal{N}_{1}(T) \cup \mathcal{N}_{2.2}(T)$ is locally maximal, then $\bigcup \mathcal{M}_{Q^{\prime}} \subset E_{Q^{\prime}}$, where $\mathcal{M}_{Q^{\prime}}$ is the set of auxiliary cores defined in Lemma 4.7/4.12.

Proof. If $U_{Q^{\prime}} \in \mathcal{N}_{2.1}(T)$, then $F_{Q^{\prime}}=E_{Q^{\prime}}=U_{Q^{\prime}}$ and the conclusion follows since the cores $\left\{U_{Q^{\prime \prime}}: Q^{\prime \prime} \in \operatorname{Child}(Q)\right\}$ are pairwise disjoint. Thus, suppose that $U_{Q^{\prime}} \in \mathcal{N}_{1}(T) \cup \mathcal{N}_{2.2}(T)$ is locally maximal, $Q^{\prime \prime} \in \operatorname{Child}(Q)$, and $U_{Q^{\prime \prime}} \cap F_{Q^{\prime}} \neq \emptyset$. Since $F_{Q^{\prime}} \subset 16 Q_{*}^{\prime}$ and $U_{Q^{\prime}}$ is locally maximal, either $U_{Q^{\prime \prime}}=U_{Q^{\prime}}$ or $\operatorname{diam} Q^{\prime \prime}<\operatorname{diam} Q^{\prime}$. In the former case, we have $U_{Q^{\prime \prime}}=U_{Q^{\prime}} \subset E_{Q^{\prime}}$ trivially by definition of $E_{Q^{\prime}}$. In the latter case,

$$
\operatorname{diam} U_{Q^{\prime \prime}} \leq 1.00001 \operatorname{diam} Q_{*}^{\prime \prime} \leq 2^{1-K M} \operatorname{diam} Q_{*}^{\prime} \leq 2^{-99} \operatorname{diam} Q_{*}^{\prime}
$$

When $U_{Q^{\prime}} \in \mathcal{N}_{1}(T)$, it easily follows that $U_{Q^{\prime \prime}}$ intersecting $F_{Q^{\prime}}=P_{1.02 Q_{*}^{\prime}} \cap 3.98 Q_{*}^{\prime}$ implies $U_{Q^{\prime \prime}} \subset P_{1.03 Q_{*}^{\prime}} \cap 3.99 Q_{*}^{\prime}=E_{Q^{\prime}}$. Similarly, when $U_{Q^{\prime}} \in \mathcal{N}_{2.2}(T)$, it follows that $U_{Q^{\prime \prime}}$ intersecting $F_{Q^{\prime}}=15.98 Q_{*}^{\prime}$ implies $U_{Q^{\prime \prime}} \subset 15.99 Q_{*}^{\prime}=E_{Q^{\prime}}$.

Lemma 5.4. Let $Q \in \mathscr{G}$, let $T \subset T^{\prime} \in \Gamma_{U_{Q}}^{*}$ be an efficient subarc, and let r_{T} be given by (3.8). For all $U_{Q^{\prime}} \in \mathcal{N}(T)$, the neighborhood $E_{Q^{\prime}} \subset B_{9 r_{T}}(T)$. Moreover, $E_{Q^{\prime}} \cap 1.99 \lambda Q^{\prime \prime}=\emptyset$ for all $Q^{\prime \prime} \in \operatorname{Child}(Q)$ such that $\operatorname{diam} Q^{\prime} \leq \operatorname{diam} Q^{\prime \prime}$ and $\Pi_{T}\left(16 Q_{*}^{\prime}\right) \cap\left(L_{T} \backslash \Pi_{T}\left(2 \lambda Q^{\prime \prime}\right)\right) \neq \emptyset$.

Proof. Let $U_{Q^{\prime}} \in \mathcal{N}(T)$. Then $T \cap 1.00002 Q_{*}^{\prime} \neq \emptyset$; choose any point y in the intersection. Letting x^{\prime} denote the center of Q^{\prime}, we have $\left|x^{\prime}-y\right| \leq 1.00002$ radius Q_{*}^{\prime}. Let $x \in E_{Q^{\prime}} \subset$ $15.99 Q_{*}^{\prime}$. Then $|x-y| \leq\left|x-x^{\prime}\right|+\left|x^{\prime}-y\right| \leq 16.99002$ radius $Q_{*}^{\prime} \leq 8.49501 \operatorname{diam} Q_{*}^{\prime}<9 r_{T}$. Hence $E_{Q^{\prime}} \subset B_{9 r_{T}}(T)$ with room to spare.

Let $Q^{\prime \prime} \in \operatorname{Child}(Q)$ and suppose that $\operatorname{diam} Q^{\prime} \leq \operatorname{diam} Q^{\prime \prime}$ and $\Pi_{T}\left(16 Q_{*}^{\prime}\right)$ intersects the complement of $\Pi_{T}\left(2 \lambda Q^{\prime \prime}\right)$. Then $16 Q_{*}^{\prime} \cap\left(\mathbb{X} \backslash 2 \lambda Q^{\prime \prime}\right) \neq \emptyset$, as well. Note that

$$
\operatorname{gap}\left(\mathbb{X} \backslash 2 \lambda Q^{\prime \prime}, 1.99 \lambda Q^{\prime \prime}\right) \geq 0.01 \text { radius } Q^{\prime \prime} \geq 20.48 \operatorname{diam} Q_{*}^{\prime \prime} \geq 20.48 \operatorname{diam} Q_{*}^{\prime} .
$$

Thus, $\operatorname{gap}\left(E_{Q^{\prime}}, 1.99 \lambda Q^{\prime \prime}\right) \geq \operatorname{gap}\left(16 Q_{*}^{\prime}, 1.99 \lambda Q^{\prime \prime}\right) \geq \operatorname{gap}\left(\mathbb{X} \backslash 2 \lambda Q^{\prime \prime}, 1.99 \lambda Q^{\prime \prime}\right)-\operatorname{diam} 16 Q_{*}^{\prime} \geq$ $4.48 \operatorname{diam} Q_{*}^{\prime}>0$. Therefore, $E_{Q^{\prime}}$ does not intersect $1.99 \lambda Q^{\prime \prime}$.

Lemma 5.5. Let $Q \in \mathscr{G}$ and let $T \subset T^{\prime} \in \Gamma_{U_{Q}}^{*}$ be an efficient subarc. If $U_{Q^{\prime}}, U_{Q^{\prime \prime}} \in \mathcal{N}(T)$, $\operatorname{diam} Q^{\prime}<\operatorname{diam} Q^{\prime \prime}$, and $\Pi_{T}\left(D_{Q^{\prime}}\right)$ intersects $L_{T} \backslash \Pi_{T}\left(D_{Q^{\prime \prime}}\right)$, then $D_{Q^{\prime}} \cap E_{Q^{\prime \prime}}=\emptyset$. Also, $D_{Q^{\prime}} \cap D_{Q^{\prime \prime \prime}}=\emptyset$ for all $U_{Q^{\prime \prime \prime}} \in \mathcal{N}(T) \backslash\left\{U_{Q^{\prime}}\right\}$ such that $\operatorname{diam} Q^{\prime \prime \prime}=\operatorname{diam} Q^{\prime}$.
Proof. Under the hypotheses of the lemma, $\operatorname{diam} D_{Q^{\prime}} \leq 16 Q_{*}^{\prime} \leq 2^{-96} \operatorname{diam} Q_{*}^{\prime \prime}$ and $D_{Q^{\prime}}$ intersects $\mathbb{X} \backslash D_{Q^{\prime \prime}}$. Reviewing Definitions 4.4/4.9, we further know $\operatorname{gap}\left(\mathbb{X} \backslash D_{Q^{\prime \prime}}, E_{Q^{\prime \prime}}\right) \geq$ 0.00001 diam $Q_{*}^{\prime \prime}$. Therefore,

$$
\operatorname{gap}\left(D_{Q^{\prime}}, E_{Q^{\prime \prime}}\right) \geq \operatorname{gap}\left(\mathbb{X} \backslash D_{Q^{\prime \prime}}, E_{Q^{\prime \prime}}\right)-\operatorname{diam} D_{Q^{\prime}} \geq\left(0.00001-2^{-96}\right) \operatorname{diam} Q_{*}^{\prime \prime}>0
$$

If $D_{Q^{\prime \prime \prime}} \in \mathcal{N}(T) \backslash\left\{U_{Q^{\prime}}\right\}$ and $\operatorname{diam} Q^{\prime \prime \prime}=\operatorname{diam} Q^{\prime}$, then $D_{Q^{\prime}} \cap D_{Q^{\prime \prime \prime}}=\emptyset$ by Remark 2.6.
Lemma 5.6. Let $Q \in \mathscr{G}$ and let $T \subset T^{\prime} \in \Gamma_{U_{Q}}^{*}$ be an efficient subarc. If $U_{Q^{\prime}} \in \mathcal{N}(T)$ is not locally maximal, then $16 Q_{*}^{\prime} \subset 1.00002 Q_{*}^{\prime \prime}$ for some $U_{Q^{\prime \prime}} \in \mathcal{N}(T)$ that is locally maximal or for some $U_{Q^{\prime \prime}} \notin \mathcal{N}(T)$.

Proof. Assume that $U_{Q^{1}} \in \mathcal{N}(T)$ is not locally maximal. Then there exists $Q^{2} \in \operatorname{Child}(Q)$ with $\operatorname{diam} Q^{2}>\operatorname{diam} Q^{1}$ such that $U_{Q^{2}} \cap 16 Q_{*}^{1} \neq \emptyset$. Let x_{1} and x_{2} denote the centers of Q^{1} and Q^{2}, respectively, and choose $w_{1} \in U_{Q^{2}} \cap 16 Q_{*}^{1} \subset 1.00001 Q_{*}^{2} \cap 16 Q_{*}^{1}$. We have

$$
\begin{equation*}
\left|x_{1}-x_{2}\right| \leq\left|x_{1}-w_{1}\right|+\left|w_{1}-x_{2}\right| \leq 16 \text { radius } Q_{*}^{1}+1.00001 \text { radius } Q_{*}^{2} \tag{5.1}
\end{equation*}
$$

Since radius $Q_{*}^{1} \leq 2^{-100}$ radius Q_{*}^{2}, it follows that for all $z \in 16 Q_{*}^{1}$,

$$
\left|z-x_{2}\right| \leq 32 \text { radius } Q_{*}^{1}+1.00001 \text { radius } Q_{*}^{2} \leq\left(2^{-95}+1.00001\right) \text { radius } Q_{*}^{2}
$$

Hence $16 Q_{*}^{1} \subset 1.00002 Q_{*}^{2}$. If perchance either $U_{Q^{2}} \in \mathcal{N}(T)$ and $U_{Q^{2}}$ is locally maximal or $U_{Q^{2}} \notin \mathcal{N}(T)$, then we are done. The other possibility is that $U_{Q^{2}} \in \mathcal{N}(T)$ and $U_{Q^{2}}$ is not locally maximal and we repeat the argument.

Suppose that for some $j \geq 3$ we have found cores $U_{Q^{1}}, \cdots U_{Q^{j-1}} \in \mathcal{N}(T)$, each of which is not locally maximal, such that

$$
\begin{equation*}
\operatorname{diam} Q^{i}>\operatorname{diam} Q^{i-1} \text { and } U_{Q^{i}} \cap 16 Q_{*}^{i-1} \neq \emptyset \quad \text { for all } 2 \leq i \leq j-1 \tag{5.2}
\end{equation*}
$$

and such that the centers x_{1}, \ldots, x_{j-1} of the balls Q^{1}, \ldots, Q^{j-1} satisfy

$$
\begin{equation*}
\left|x_{i-1}-x_{i}\right| \leq 16 \text { radius } Q_{*}^{i-1}+1.00001 \text { radius } Q_{*}^{i} \quad \text { for all } 2 \leq i \leq j-1 \tag{5.3}
\end{equation*}
$$

Since Q^{j-1} is not locally maximal, $\operatorname{diam} Q^{j-1} \leq 2^{-2 K M} \operatorname{diam} Q$ by Remark 5.2 and there exists $Q^{j} \in \operatorname{Child}(Q)$ such that $\operatorname{diam} Q^{j}>\operatorname{diam} Q^{j-1}$ and $U_{Q^{j}} \cap 16 Q_{*}^{j-1} \neq \emptyset$. Let x_{j} denote the center of Q^{j} and choose $w_{j-1} \in U_{Q^{j}} \cap 16 Q_{*}^{j-1} \subset 1.00001 Q_{*}^{j} \cap 16 Q_{*}^{j-1}$. Then

$$
\begin{equation*}
\left|x_{j-1}-x_{j}\right| \leq\left|x_{j-1}-w_{j-1}\right|+\left|w_{j-1}-x_{j}\right| \leq 16 \text { radius } Q_{*}^{j-1}+1.00001 \text { radius } Q_{*}^{j} \tag{5.4}
\end{equation*}
$$

Thus, (5.2) and (5.3) also hold when $i=j$. Let $z \in 16 Q_{*}^{1}$ and write $\left|z-x_{j}\right| \leq\left|z-x_{1}\right|+$ $\left|x_{1}-x_{2}\right|+\cdots+\left|x_{j-1}-x_{j}\right|$. Since radius $Q_{*}^{i-1} \leq 2^{-100}$ radius Q_{*}^{i} for all $2 \leq i \leq j$, we get

$$
\begin{align*}
\left|z-x_{j}\right| & \leq 16 \text { radius } Q_{*}^{1}+17.00001\left(\sum_{i=1}^{j-1} \operatorname{radius} Q_{*}^{i}\right)+1.00001 \text { radius } Q_{*}^{j} \tag{5.5}\\
& <\left(2^{-93}+1.00001\right) \text { radius } Q_{*}^{j}
\end{align*}
$$

Hence $16 Q_{*}^{1} \subset 1.00002 Q_{*}^{j}$. Once again, if either $U_{Q^{j}} \in \mathcal{N}(T)$ and $U_{Q^{j}}$ is locally maximal, or $U_{Q^{j}} \notin \mathcal{N}(T)$, then we are done. Otherwise, $U_{Q^{j}} \in \mathcal{N}(T)$ and $U_{Q^{j}}$ is not locally maximal and we go to the next step of the induction. The iterative scheme eventually terminates after finitely many steps by Remark 5.2.

Definition 5.7. Let $Q \in \mathscr{G}$ and let $T \subset T^{\prime} \in \Gamma_{U_{Q}}^{*}$ be an efficient subarc. We say that $U_{Q^{\prime}} \in \mathcal{N}(T)$ is sufficient if $U_{Q^{\prime}}$ is locally maximal or if $16 Q_{*}^{\prime} \subset 1.00002 Q_{*}^{\prime \prime}$ for some locally maximal $U_{Q^{\prime \prime}} \in \mathcal{N}(T)$. Let $\mathcal{S}(T) \subset \mathcal{N}(T)$ denote the set of all sufficient cores.

Figure 5.1. Proof of Lemma 5.8 (simplified): If no core in $\mathcal{N}_{1}(T)$ or $\mathcal{N}_{2}(T)$ intersects T above $x \in \Pi_{T}(T) \backslash \Pi_{T}\left(R_{Q}\right)$, with x far away from the endpoints of T, then it is impossible to reach $f(b)$ from $f(a)$.

The proof of the following lemma is ultimately a topological argument, which follows from our assumption that the parameterization $f:[0,1] \rightarrow \Gamma$ is continuous. (Furthermore, the proof invokes Lemma 4.16, which also exploited the continuity of f.)

Lemma 5.8 (topological lemma). Let $Q \in \mathscr{G}$ and let $T=f([a, b]) \subset T^{\prime} \in \Gamma_{U_{Q}}^{*}$ be an efficient subarc. Define ρ_{T} by (3.8) ; that is, let ρ_{T} be largest diameter of a ball $2 \lambda Q^{\prime \prime}$ among all $Q^{\prime \prime} \in \operatorname{Child}(Q)$ such that $1.00002 Q_{*}^{\prime \prime} \cap T \neq \emptyset$. For all points x such that

$$
\begin{equation*}
x \in \Pi_{T}(T) \backslash\left(\Pi_{T}\left(R_{Q} \cap T\right) \cup B_{0.51 \rho_{T}}(\{f(a), f(b)\})\right), \tag{5.6}
\end{equation*}
$$

there exists $U_{Q^{\prime}} \in \mathcal{S}(T)$ such that $x \in \Pi_{T}\left(U_{Q^{\prime}} \cap T\right)$.
Proof. Let x satisfying (5.6) be given. Following the convention in Remark 3.7, $f(a) \in P_{\{x\}}^{-}$ and $f(b) \in P_{\{x\}}^{+}$. For simplicity, we shall write P_{x} and $P_{x}^{ \pm}$instead of $P_{\{x\}}$ and $P_{\{x\}}^{ \pm}$. Consider the set $\mathcal{U}:=\left\{U_{Q^{\prime \prime}}: Q^{\prime \prime} \in \operatorname{Child}(Q), U_{Q^{\prime \prime}} \cap T \cap P_{x} \neq \emptyset\right\}$ of cores that intersect T and whose shadows contain x. Our assumption that $x \in \Pi_{T}(T) \backslash \Pi_{T}\left(R_{Q} \cap T\right)$ guarantees that \mathcal{U} is nonempty and $\emptyset \neq T \cap P_{x} \subset \bigcup_{U_{Q^{\prime \prime}} \in \mathcal{U}} U_{Q^{\prime \prime}}$. Suppose for the sake of contradiction that no core $U_{Q^{\prime \prime}} \in \mathcal{U}$ belongs to $\mathcal{S}(T)$. Then, by Lemma 5.6, for all $U_{Q^{\prime \prime}} \in \mathcal{U}$, there exists at least one core $U_{Q^{\prime}}$ in

$$
\mathcal{O}:=\left\{U_{Q^{\prime}} \notin \mathcal{N}(T): Q^{\prime} \in \operatorname{Child}(Q), 1.00002 Q_{*}^{\prime} \cap T \cap P_{x} \neq \emptyset\right\}
$$

such that $U_{Q^{\prime \prime}} \subset 16 Q_{*}^{\prime \prime} \subset 1.00002 Q_{*}^{\prime}$. Hence $\mathcal{O} \neq \emptyset$ and

$$
\begin{equation*}
T \cap P_{x} \subset \bigcup_{U_{Q^{\prime}} \in \mathcal{O}} 1.00002 Q_{*}^{\prime} \tag{5.7}
\end{equation*}
$$

Further, our assumption that $x \in \mathbb{X} \backslash B_{0.51 \rho_{T}}(\{f(a), f(b)\})$ ensures that if $U_{Q^{\prime}} \in \mathcal{O}$, then $2 \lambda Q^{\prime} \cap\{f(a), f(b)\}=\emptyset$. Indeed, given $U_{Q^{\prime}} \in \mathcal{O}$, let x^{\prime} denote the center of Q^{\prime} and pick $y^{\prime} \in 1.00002 Q_{*}^{\prime} \cap T \cap P_{x}$. Since Π_{T} is 1-Lipschitz,

$$
\left|x-\Pi_{T}\left(x^{\prime}\right)\right| \leq\left|y^{\prime}-x^{\prime}\right| \leq \text { radius } 1.00002 Q_{*}^{\prime}<2^{-12} \text { radius } 2 \lambda Q^{\prime} \leq 2^{-13} \rho_{T}
$$

Using the fact that Π_{T} is 1-Lipschitz once more and the fact that Π_{T} fixes $f(a)$ and $f(b)$, we find that

$$
\begin{aligned}
\operatorname{dist}\left(x^{\prime},\{f(a), f(b)\}\right) & \geq \operatorname{dist}\left(\Pi_{T}\left(x^{\prime}\right),\{f(a), f(b)\}\right) \geq \operatorname{dist}(x,\{f(a), f(b)\})-\left|x-\Pi_{T}\left(x^{\prime}\right)\right| \\
& >\left(0.51-2^{-13}\right) \rho_{T}>0.509 \rho_{T} \geq 0.009 \rho_{T}+\text { radius } 2 \lambda Q^{\prime}
\end{aligned}
$$

That is, $\{f(a), f(b)\}$ does not intersect an open tubular neighborhood of $2 \lambda Q^{\prime}$ of width $0.009 \rho_{T}$. As a corollary, since f is uniformly continuous, there exists $\delta>0$ depending on ρ_{T} and the modulus of continuity of f such that

$$
\begin{equation*}
\operatorname{Domain}(\tau) \cap([a, a+\delta) \cup(b-\delta, b])=\emptyset \quad \text { for every } \operatorname{arc} \tau \in S^{*}\left(\lambda Q^{\prime}\right) \tag{5.8}
\end{equation*}
$$

(Below we only need to know that $\delta>0$.) To proceed, define collections of arcs and an associated collection of intervals by

$$
\begin{align*}
\mathcal{A}_{y} & :=\left\{\tau \in S\left(\lambda Q^{\prime}\right): U_{Q^{\prime}} \in \mathcal{O}, y \in \operatorname{Image}(\tau), \operatorname{Domain}(\tau) \subset[a, b]\right\} \quad \forall y \in T \cap P_{x} \tag{5.9}\\
\mathcal{I} & :=\left\{\text { connected components } I \text { of } \bigcup\left\{\operatorname{Domain}(\tau): y \in T \cap P_{x} \text { and } \tau \in A_{y}\right\}\right\} \tag{5.10}
\end{align*}
$$

By definition, \mathcal{I} is pairwise disjoint, and by (5.7) and (5.8), we have $T \cap P_{x} \subset \bigcup_{I \in \mathcal{I}} f(I)$ and $I \subset[a+\delta, b-\delta]$ for all $I \in \mathcal{I}$. By Lemma 4.15 and Lemma4.16, for each interval $I=[c, d] \in$ \mathcal{I}, either $\Pi_{T}(f(c)), \Pi_{T}(f(d))<x$ or $\Pi_{T}(f(c)), \Pi_{T}(f(d))>x$, where we identify $[f(a), f(b)]$ with an isometric subset of \mathbb{R}. Modulo applying continuous reparameterizations to the domain and image of the continuous map $\Pi_{T} \circ f:[a, b] \rightarrow[f(a), f(b)]$, we have built a function $g:[0,1] \rightarrow[0,1]$ such that
$(\star): g$ is continuous, $g(0)=0, g(1)=1$, and there exists a pairwise disjoint collection \mathcal{J} of non-degenerate closed subintervals of $[1 / 4,3 / 4]$ such that the preimage $g^{-1}(1 / 2) \subset \bigcup \mathcal{J}$ and for all intervals $J=[c, d] \in \mathcal{J}$, either $g(c), g(d)<1 / 2$ or $g(c), g(d)>1 / 2$.
(Explicitly, send $a \mapsto 0, b \mapsto 1, a+\delta \mapsto 1 / 4, b-\delta \mapsto 3 / 4, f(a) \mapsto 0, f(b) \mapsto 1, x \mapsto 1 / 2$.) By the next lemma, no such function exists. Therefore, our supposition was false, and there exists $U_{Q^{\prime}} \in \mathcal{S}(T)$ such that $x \in \Pi_{T}\left(U_{Q^{\prime}} \cap T\right)$.

Lemma 5.9. A function $g:[0,1] \rightarrow[0,1]$ with property (\star) does not exist.
Proof. Suppose that g exists. Let \mathcal{I} denote the connected components of $[0,1] \backslash \bigcup_{J \in \mathcal{J}} J$. Label each interval $I \in \mathcal{I}$ as left-directed or right-directed depending on whether there is an interval $J=[c, d] \in \mathcal{J}$ such that $\bar{I} \cap J \neq \emptyset$ and $g(c), g(d)<1 / 2$ or $g(c), g(d)>1 / 2$, respectively. This concept is well-defined by property (\star), in particular by continuity of g and by the stated properties of \mathcal{J}. The unique half-open interval of the form $[0, b) \in \mathcal{I}$ is left-directed, because $g(0)=0$; the unique half-open interval of the form $(a, 1] \in \mathcal{I}$ is
right-directed, because $g(1)=1$. All other intervals in \mathcal{I} are open intervals (a, b) with $g(t)<1 / 2$ for all $t \in(a, b)$, if (a, b) is left-directed, and $g(t)>1 / 2$ for all $t \in(a, b)$, if (a, b) is right-directed. The only restriction on values of $g(t)$ for $t \in[c, d] \in \mathcal{J}$ are at the endpoints $t=c$ and $t=d$.

Let $L:=\{t \in[0,1]: t \in I$ for some left-directed interval $I \in \mathcal{I}\}$ and let $u:=\sup L$. Then $g(u) \leq 1 / 2$, and so, u is not contained in a right-directed interval of \mathcal{I}. Let's consider the other two possibilities. First, suppose that $u \in I$ for some left-directed $I \in \mathcal{I}$. Since every left-directed interval is open to the right (as the interval containing 1 is rightdirected), this would mean that u cannot be an upper bound on L, which is absurd. Next, suppose that $u \in J$ for some $J \in \mathcal{J}$. Then $J=[u, v]$ for some $u<v$ and $g(u)<1 / 2$. (This used the approximation property of the supremum.) Let $I^{\prime}=(v, d) \in \mathcal{I}$ be the interval lying immediately to the right of J. The interval I^{\prime} must exist, since the interval containing 1 belongs to \mathcal{I}. Since $v>u, I^{\prime}$ must be right-directed. Hence $g(v)>1 / 2$. Thus, $g(u)>1 / 2$, because $[u, v] \in \mathcal{J}$. This contradicts our observation that $g(u) \leq 1 / 2$. Therefore, there does not exist a function $g:[0,1] \rightarrow[0,1]$ with property (\star).

6. Proof of Lemma [I

6.1. Stage 1: improving the coarse estimate.

Lemma 6.1 (initial improvement of (3.6)). With notation as in Lemma 1 .

$$
\begin{equation*}
\operatorname{diam} T-2 \rho_{T} \leq 1.7 \ell\left(R_{Q} \cap B_{9 r_{T}}(T)\right)+\sum_{U_{Q^{\prime \prime}} \in \mathcal{F}} \operatorname{diam} 2 \lambda Q^{\prime \prime}+1.37 \sum_{U_{Q^{\prime}} \subset B_{9_{r_{T}}}(T), U_{Q^{\prime}} \notin \mathcal{N}_{\mathcal{F}}} \operatorname{diam} H_{Q^{\prime}} \tag{6.1}
\end{equation*}
$$

Proof. Since T is an efficient subarc, $\Pi_{T}(T)=[f(a), f(b)]$. To start, let

$$
\begin{equation*}
J_{0}=\left[f(a)+\rho_{T}, f(b)-\rho_{T}\right] \backslash\left(\Pi_{T}\left(R_{Q} \cap T\right) \cup \Pi_{T}\left(\bigcup_{\mathcal{F}} 2 \lambda Q^{\prime \prime}\right)\right) \tag{6.2}
\end{equation*}
$$

By subadditivity of measures and the fact that Π_{T} is 1-Lipschitz,

$$
\begin{align*}
\operatorname{diam} T-2 \rho_{T} & \leq \mathcal{H}^{1}\left(\Pi_{T}\left(R_{Q} \cap T\right)\right)+\mathcal{H}^{1}\left(\Pi_{T}\left(\bigcup_{\mathcal{F}} 2 \lambda Q^{\prime \prime}\right)\right)+\mathcal{H}^{1}\left(J_{0}\right) \\
& \leq \ell\left(R_{Q} \cap T\right)+\sum_{\mathcal{F}} \operatorname{diam} 2 \lambda Q^{\prime \prime}+\mathcal{H}^{1}\left(J_{0}\right) \tag{6.3}
\end{align*}
$$

We shall reach (6.1) from (6.3) by making a sequence of refined estimates on $\mathcal{H}^{1}\left(J_{0}\right)$. More precisely, we inductively define measurabl ℓ^{2} sets $J_{0} \supset J_{1} \supset J_{2} \supset \cdots$ with $\bigcap_{i=0}^{\infty} J_{i}=\emptyset$ and "pay for" $\mathcal{H}^{1}\left(J_{i-1} \backslash J_{i}\right)$ for each $i \geq 1$ using a Borel subset R_{i} of the remainder set R_{Q} and certain cores \mathcal{M}_{i} in lying in $B_{9 r_{T}}(T)$. In particular, we will prove that

$$
\begin{equation*}
\mathcal{H}^{1}\left(J_{i-1} \backslash J_{i}\right) \leq 0.7 \ell\left(R_{i}\right)+1.37 \sum_{U_{Q^{\prime}} \in \mathcal{M}_{i}} \operatorname{diam} H_{Q^{\prime}} \tag{6.4}
\end{equation*}
$$

Naturally, we will arrange things so that $R_{i} \cap R_{j}=\emptyset$ and $\mathcal{M}_{i} \cap \mathcal{M}_{j}=\emptyset$ for all $i \neq j$. Further, the cores in \mathcal{M}_{i} will not belong to $\mathcal{N}_{\mathcal{F}}$, the set of all cores $U_{Q^{\prime}}$ with $Q^{\prime} \in \operatorname{Child}(Q)$

[^1]such that $U_{Q^{\prime}} \subset 1.99 \lambda Q^{\prime \prime}$ for some $U_{Q^{\prime \prime}} \in \mathcal{F}$. Thus, 6.1) follows immediately by combining (6.3) and (6.4).

Let $\mathcal{S}(T)$ be given as in Definition 5.7. For each $i \geq 1$, inductively define

$$
\begin{align*}
\mathcal{S}_{i} & :=\left\{U_{Q^{\prime}} \in \mathcal{S}(T): \operatorname{diam} Q^{\prime}=2^{-K M i} \operatorname{diam} Q, \Pi_{T}\left(U_{Q^{\prime}}\right) \cap J_{i-1} \neq \emptyset\right\} \tag{6.5}\\
J_{i} & :=J_{i-1} \backslash \bigcup_{U_{Q^{\prime}} \in \mathcal{S}_{i}} \Pi_{T}\left(D_{Q^{\prime}}\right) \tag{6.6}
\end{align*}
$$

By Lemma 5.8, every $x \in J_{0}$ lies in the shadow $\Pi_{T}\left(U_{Q^{\prime}}\right)$ of some core $U_{Q^{\prime}} \in \mathcal{S}(T)$. Hence $\bigcap_{i=0}^{\infty} J_{i}=\emptyset$. Every core $U_{Q^{\prime}} \in \mathcal{S}_{i}(i \geq 1)$ is locally maximal (see Definitions 5.1 and 5.7), because $\Pi_{T}\left(U_{Q^{\prime}}\right) \cap J_{i-1} \neq \emptyset$ implies that $16 Q_{*}^{\prime} \not \subset 1.00002 Q_{*}^{\prime \prime}$ for any locally maximal core $U_{Q^{\prime \prime}} \in \mathcal{N}(T)$ with $\operatorname{diam} Q^{\prime \prime}>\operatorname{diam} Q^{\prime}$. Indeed, the shadows $\Pi_{T}\left(D_{Q^{\prime \prime}}\right) \supset \Pi_{T}\left(1.00002 Q_{*}^{\prime \prime}\right)$ of all locally maximal $U_{Q^{\prime \prime}} \in \mathcal{N}(T)$ with $\operatorname{diam} Q^{\prime \prime}>\operatorname{diam} Q^{\prime}$ (which belong to $\mathcal{S}(T)$) were already deleted from J_{0}, \ldots, J_{i-2} in the inductive definition J_{i-1}.

Our next task is to bound the length of each set $J_{i-1} \backslash J_{i}$. Fix $i \geq 1$. If $J_{i}=J_{i-1}$, then $\mathcal{H}^{1}\left(J_{i-1} \backslash J_{i}\right)=0$. If $J_{i} \neq J_{i-1}$, then by countable subadditivity of measures, the isodiametric inequality $\mathcal{H}^{1}(A) \leq \operatorname{diam} A$ for all $A \subset \mathbb{R}$, and the fact that Π_{T} is 1-Lipschitz,

$$
\begin{equation*}
\mathcal{H}^{1}\left(J_{i-1} \backslash J_{i}\right) \leq \sum_{U_{Q^{\prime}} \in \mathcal{S}_{i}} \operatorname{diam} \Pi_{T}\left(D_{Q^{\prime}}\right) \tag{6.7}
\end{equation*}
$$

For each $U_{Q^{\prime}} \in \mathcal{S}_{i}$, define an auxiliary family of cores $\mathcal{M}_{Q^{\prime}}$ and Borel set $\hat{R}_{Q^{\prime}}$ as follows:

- if $U_{Q^{\prime}} \in \mathcal{N}_{1}(T)$, define $\mathcal{M}_{Q^{\prime}}$ to be the family in Lemma 4.7 and $\hat{R}_{Q^{\prime}}:=R_{Q} \cap F_{Q^{\prime}}$;
- if $U_{Q^{\prime}} \in \mathcal{N}_{2.1}(T)$, define $\mathcal{M}_{Q^{\prime}}:=\left\{U_{Q^{\prime}}\right\}$ and $\hat{R}_{Q^{\prime}}:=\emptyset$ (cf. Lemma 4.10); and,
- if $U_{Q^{\prime}} \in \mathcal{N}_{2.2}(T)$, define $\mathcal{M}_{Q^{\prime}}$ to be the family in Lemma 4.12 and $\hat{R}_{Q^{\prime}}:=R_{Q} \cap F_{Q^{\prime}}$.

By Lemma 5.3, the set $M_{Q^{\prime}}:=\hat{R}_{Q^{\prime}} \cup \bigcup \mathcal{M}_{Q^{\prime}} \subset E_{Q^{\prime}}$ for all $U_{Q^{\prime}} \in \mathcal{S}_{i}$. Furthermore, the set $M_{Q^{\prime}} \subset B_{9 r_{T}}(T)$ and $\mathcal{M}_{Q^{\prime}} \cap \mathcal{N}_{\mathcal{F}}=\emptyset$ by Lemma 5.4 and property (F). Define

$$
\begin{equation*}
\mathcal{M}_{i}:=\bigcup_{U_{Q^{\prime}} \in \mathcal{S}_{i}} \mathcal{M}_{Q^{\prime}} \quad \text { and } \quad R_{i}:=\bigcup_{U_{Q^{\prime}, \mathcal{S}_{i}}} \hat{R}_{Q^{\prime}} \tag{6.8}
\end{equation*}
$$

Then (6.4) follows immediately from (6.7), the estimates Lemma 4.7, Lemma 4.10, and Lemma 4.12, and the second part of Lemma 5.5.

Finally, as required, $\mathcal{M}_{i} \cap \mathcal{M}_{j}=\emptyset$ and $R_{i} \cap R_{j}=\emptyset$ for all $i \neq j$ by the first part of Lemma 5.5.

6.2. Stage 2: iterating the improved estimate.

Lemma 6.2. Let $Q \in \mathscr{G}$ and let $T \subset T^{\prime} \in \Gamma_{U_{Q}}^{*}$ be an efficient subarc. If $U_{Q^{\prime}} \in \mathcal{N}_{2.2}(T)$ is locally maximal, then there is a set $\mathcal{M}_{Q^{\prime}}$ of cores $U_{Q^{\prime \prime}}$ with $Q^{\prime \prime} \in \operatorname{Child}(Q)$ and $U_{Q^{\prime \prime}} \subset E_{Q^{\prime}}$ such that

$$
\begin{equation*}
\operatorname{diam} D_{Q^{\prime}}<1.2 \ell\left(R_{Q} \cap E_{Q^{\prime}}\right)+0.95 \sum_{U_{Q^{\prime \prime}} \in \mathcal{M}_{Q^{\prime}}} \operatorname{diam} H_{Q^{\prime \prime}} \tag{6.9}
\end{equation*}
$$

Proof. Let \mathcal{Y} be given by Lemma 4.11. We repeat the proof of Lemma 4.12, but use the improved estimate (6.1) with $\mathcal{F}=\emptyset$ instead of the coarse estimate. In effect, we are incorporating the existence of cores $U_{Q^{\prime \prime}}$ that lie nearby, but do not necessarily intersect the subarcs $Y \in \mathcal{Y}$. By Lemma 4.11 and assumption $U_{Q^{\prime}}$ is locally maximal, for every subarc $Y \in \mathcal{Y}$, we know that $Y \subset F_{Q^{\prime}} \backslash Q_{*}^{\prime}$, diam $Y \geq 0.00021 \operatorname{diam} Q_{*}^{\prime}, r_{Y} \leq 2^{-K M} \operatorname{diam} Q_{*}^{\prime} \leq$ $2^{-100} \operatorname{diam} Q_{*}^{\prime}, \rho_{Y} \leq 2 \lambda A_{\mathscr{H}} \cdot 2^{12} r_{Y} \leq 2^{-84} \operatorname{diam} Q_{*}^{\prime}$, and $0.99999 \operatorname{diam} Y \leq \operatorname{diam} Y-2 \rho_{Y}$. In addition, $\left\{1.00002 Q_{*}^{\prime}\right\} \cup\left\{B_{9 r_{Y}}(Y): Y \in \mathcal{Y}\right\}$ is pairwise disjoint. Since $F_{Q^{\prime}}=15.98 Q_{*}^{\prime}$, we easily obtain $B_{9 r_{Y}}(Y) \subset 15.981 Q_{*}^{\prime} \subset 15.99 Q_{*}^{\prime}=E_{Q^{\prime}}$ from the estimate on r_{Y}.

Let $\mathcal{M}_{Q^{\prime}}=\left\{U_{Q^{\prime \prime}}: Q^{\prime \prime} \in \operatorname{Child}(Q)\right.$ and $\left.U_{Q^{\prime \prime}} \subset E_{Q^{\prime}}\right\}$. Now, diam $Q_{*}^{\prime} \leq 2.00002$ diam $H_{Q^{\prime}}$, which implies $0.68499 \operatorname{diam} Q_{*}^{\prime} \leq 1.37$ diam $H_{Q^{\prime}}$. Further, for every $Y \in \mathcal{Y}$,

$$
0.99999 \operatorname{diam} Y \leq \operatorname{diam} Y-2 \rho_{Y} \leq 1.7 \ell\left(R_{Q} \cap B_{9 r_{Y}}(Y)\right)+\underset{U_{Q^{\prime \prime}} \subset B_{9_{r_{Y}}(Y)}}{1.37 \sum_{Q^{\prime \prime}}} \operatorname{diam} H_{Q^{\prime \prime}}
$$

by (6.1) with $\mathcal{F}=\emptyset$. Also, by Lemma 4.11, $\sum_{Y \in \mathcal{Y}} 0.99999 \operatorname{diam} Y \geq 22.45977 \operatorname{diam} Q_{*}^{\prime}$. Finally, $B_{9 r_{Y}}(Y) \subset E_{Q^{\prime}}$. Combining these estimates, we obtain

$$
(0.68499+22.45977) \operatorname{diam} Q_{*}^{\prime} \leq 1.7 \ell\left(R_{Q} \cap E_{Q^{\prime}}\right)+1.37 \sum_{U_{Q^{\prime \prime}} \in \mathcal{M}_{Q^{\prime}}} \operatorname{diam} H_{Q^{\prime \prime}}
$$

Since diam $D_{Q^{\prime}}=16 \operatorname{diam} Q_{*}^{\prime}$, this estimate yields (6.9).
Proof of Lemma [1. Repeat the proof of Lemma 6.1, except use Lemma 6.2 in place of Lemma 4.12. Instead of (6.4), the proof gives

$$
\begin{equation*}
\mathcal{H}^{1}\left(J_{i-1} \backslash J_{i}\right) \leq 1.2 \ell\left(R_{i}\right)+1.00016 \sum_{U_{Q^{\prime}} \in \mathcal{M}_{i} \cap \mathcal{N}_{2.1}(T)} \operatorname{diam} H_{Q^{\prime \prime}}+0.95 \sum_{U_{Q^{\prime}} \in \mathcal{M}_{i} \backslash \mathcal{N}_{2.1}(T)} \operatorname{diam} H_{Q^{\prime}} \tag{6.10}
\end{equation*}
$$

Therefore, instead of (6.1), we ultimately obtain

$$
\begin{align*}
& \operatorname{diam} T-2 \rho_{T} \leq 2.2 \ell\left(R_{Q} \cap B_{9 r_{T}}(T)\right)+\sum_{U_{Q^{\prime \prime}} \in \mathcal{F}} \operatorname{diam} 2 \lambda Q^{\prime \prime} \\
&+1.00016 \sum_{U_{Q^{\prime}} \in \mathcal{N}_{2.1}(T) \backslash \mathcal{N}_{\mathcal{F}}} \operatorname{diam} H_{Q^{\prime}}+0.95 \sum_{U_{Q^{\prime}} \notin \mathcal{N}_{2.1}(T) \cup \mathcal{N}_{\mathcal{F}}} \operatorname{diam} H_{Q^{\prime}} . \tag{6.11}
\end{align*}
$$

where the sums in the second line may be further restricted to $U_{Q^{\prime}}$ contained in $B_{9 r_{T}}(T)$. Replacing the terms $0.95 \sum_{U_{Q^{\prime}} \in \mathcal{N}_{2.2}(T) \backslash \mathcal{N}_{\mathcal{F}}} \operatorname{diam} H_{Q^{\prime}}$ with $1.00016 \sum_{U_{Q^{\prime}} \in \mathcal{N}_{2.2}(T) \backslash \mathcal{N}_{\mathcal{F}}} \operatorname{diam} H_{Q^{\prime}}$ yields (3.9). (The purpose of this last step is to let us avoid defining $\mathcal{N}_{2.1}(T)$ in $\S 3$.)

Remark 6.3. One could continue to iterate estimates for $\mathcal{N}_{2.2}(T)$ cores to further reduce the coefficient 0.95. However, iteration will never let us improve the coefficient 1.00016 associated to $\mathcal{N}_{2.1}(T)$ cores.

7. Proof of Lemma II

Assume for the duration of this section that $Q \in \mathscr{G}$ has small remainder in the sense of Definition 3.3 and few non- $\mathcal{N}_{2}\left(G_{Q}\right)$ cores in the sense of (3.11).
7.1. Existence of \mathcal{A} and proof of (3.12). Because $G_{Q}=f\left(\left[a_{Q}, b_{Q}\right]\right)$ satisfies (3.7), Q has small remainder, and (3.11) holds,

$$
\begin{align*}
\mathcal{H}^{1}\left(\Pi_{G_{Q}}\left(\cup \mathcal{N}_{2}\left(G_{Q}\right)\right)\right) & \geq \operatorname{diam} G_{Q}-\ell\left(R_{Q}\right)-\sum_{U_{Q^{\prime}} \notin \mathcal{N}_{2}\left(G_{Q}\right)} \operatorname{diam} U_{Q^{\prime}} \tag{7.1}\\
& \geq(0.99993-0.01-0.05) \operatorname{diam} H_{Q}=0.93993 \operatorname{diam} H_{Q}
\end{align*}
$$

(To start, write $\operatorname{diam} G_{Q}=\mathcal{H}^{1}\left(\Pi_{G_{Q}}\left(G_{Q}\right)\right)$. Compare to the derivation of 6.1).)
We will construct \mathcal{A} inductively using a greedy algorithm. To begin, we stratify $\mathcal{N}_{2}\left(G_{Q}\right)$ by size. For each $i \geq 1$, let \mathcal{U}_{i} denote the set of all cores $U_{Q^{\prime}} \in \mathcal{N}_{2}\left(G_{Q}\right)$ such that $\operatorname{diam} Q^{\prime}=2^{-K M i} \operatorname{diam} Q$. Each family \mathcal{U}_{i} consists of finitely many cores, because Γ is compact. Some (but not all) of the families may be empty.

Choose \mathcal{A}_{1} to be a maximal subset of \mathcal{U}_{1} such that $\left\{2 \lambda Q^{\prime \prime}: U_{Q^{\prime \prime}} \in \mathcal{A}_{1}\right\}$ is pairwise disjoint. Note that \mathcal{A}_{1} automatically enjoys property (F) with $T=G_{Q}$, because there are no $Q^{\prime} \in \operatorname{Child}(Q)$ with $\operatorname{diam} Q^{\prime}>\operatorname{diam} Q^{\prime \prime}$. If $\sum_{U_{Q^{\prime \prime}} \in \mathcal{A}_{1}} \operatorname{diam} 2 \lambda Q^{\prime \prime} \geq 0.04 \operatorname{diam} H_{Q}$, then we halt and define $\mathcal{A}:=\mathcal{A}_{1}$. Otherwise, we move to the induction step.

Suppose that we have defined $\mathcal{A}_{1} \subset \cdots \subset \mathcal{A}_{i-1}$ for some $i \geq 2$ so that \mathcal{A}_{i-1} satisfies property (F) with $T=G_{Q}$ and $\sum_{U_{Q^{\prime \prime} \in \mathcal{A}_{i-1}}} \operatorname{diam} 2 \lambda Q^{\prime \prime}<0.04 \operatorname{diam} H_{Q}$. Choose a maximal family \mathcal{A}_{i}^{\prime} from the collection

$$
\begin{align*}
& \left\{U_{Q^{\prime \prime}} \in \mathcal{U}_{i}: 2 \lambda Q^{\prime \prime} \cap 2 \lambda Q^{\prime}=\emptyset \text { for all } U_{Q^{\prime}} \in \mathcal{A}_{i-1},\right. \text { and } \\
& \left.\quad 2 \lambda Q^{\prime \prime} \not \subset 16.1 Q_{*}^{\prime} \text { when } U_{Q^{\prime}} \in \operatorname{Child}(Q) \text { and } \operatorname{diam} Q^{\prime}>\operatorname{diam} Q^{\prime \prime}\right\} \tag{7.2}
\end{align*}
$$

such that $\left\{2 \lambda Q^{\prime \prime}: U_{Q^{\prime \prime}} \in \mathcal{A}_{i}^{\prime}\right\}$ is pairwise disjoint. If it happened that $2 \lambda Q^{\prime \prime} \cap 16 Q_{*}^{\prime} \neq \emptyset$ for some $U_{Q^{\prime \prime}} \in \mathcal{A}_{i}^{\prime}$ and $U_{Q^{\prime}} \in \operatorname{Child}(Q)$ with $\operatorname{diam} Q^{\prime}>\operatorname{diam} Q^{\prime \prime}$, then we would also have $2 \lambda Q^{\prime \prime} \subset 16.1 Q_{*}^{\prime}$ by (2.7), which is impossible. Thus, the next family $\mathcal{A}_{i}:=\mathcal{A}_{i-1} \cup \mathcal{A}_{i}^{\prime}$ also satisfies property (F) with $T=G_{Q}$. If $\sum_{U_{Q^{\prime \prime}} \in \mathcal{A}_{i}} \operatorname{diam} 2 \lambda Q^{\prime \prime} \geq 0.04 \operatorname{diam} H_{Q}$, then we halt and define $\mathcal{A}:=\overline{\mathcal{A}_{i}}$. Otherwise, carry out the next step of the induction.

We claim that the process described above always halts, i.e. there is an integer $n \geq 1$ such that $\mathcal{A}=\mathcal{A}_{n}$ has property (F) and $\sum_{U_{Q^{\prime \prime} \in \mathcal{A}}} \operatorname{diam} 2 \lambda Q^{\prime \prime} \geq 0.04 \operatorname{diam} H_{Q}$. Suppose for contradiction that the process does not halt. We will construct an overly efficient cover of $\Pi_{G_{Q}}\left(\bigcup_{U_{Q^{\prime \prime} \in \mathcal{N}_{2}\left(G_{Q}\right)}} U_{Q^{\prime \prime}}\right)$. Suppose that $U_{Q^{\prime \prime}} \in \mathcal{U}_{j} \backslash \mathcal{A}_{j}$ for some $j \geq 1$. Then, by maximality of the family \mathcal{A}_{j}^{\prime}, at least one of the following occurs:
(i) $2 \lambda Q^{\prime \prime} \cap 2 \lambda Q^{\prime} \neq \emptyset$ for some $Q^{\prime} \in \mathcal{A}_{j}$ with $\operatorname{diam} Q^{\prime} \geq \operatorname{diam} Q^{\prime \prime}$;
(ii) $2 \lambda Q^{\prime \prime} \subset 16.1 Q_{*}^{\prime}$ for some $U_{Q^{\prime}} \in \operatorname{Child}(Q)$ with $\operatorname{diam} Q^{\prime}>\operatorname{diam} Q^{\prime \prime}$.

In situtation (i), $2 \lambda Q^{\prime \prime} \subset 6 \lambda Q^{\prime}$ for some $U_{Q^{\prime}} \in \mathcal{A}_{j}$. In the event that (ii) holds, there are two alternatives:
(iii) $2 \lambda Q^{\prime \prime} \subset 16.1 Q_{*}^{\prime}$ for some $U_{Q^{\prime}} \notin \mathcal{N}_{2}\left(G_{Q}\right)$;
(iv) $2 \lambda Q^{\prime \prime} \subset 16.1 Q_{*}^{\prime} \subset 2 \lambda Q^{\prime}$ for some $U_{Q^{\prime}} \in \mathcal{N}_{2}\left(G_{Q}\right)$ with $\operatorname{diam} Q^{\prime}>\operatorname{diam} Q^{\prime \prime}$, and hence $U_{Q^{\prime}} \in \mathcal{U}_{i}$ for some $i<j$.

It follows that for each $j \geq 1$,

$$
\begin{equation*}
\bigcup_{U_{Q^{\prime \prime}} \in \mathcal{U}_{j}} 2 \lambda Q^{\prime \prime} \subset \bigcup_{U_{Q^{\prime}} \in \mathcal{A}_{j}} 6 \lambda Q^{\prime} \quad \cup \bigcup_{U_{Q^{\prime}} \notin \mathcal{N}_{2}\left(G_{Q}\right)} 16.1 Q_{*}^{\prime} \cup \bigcup_{i=1}^{j-1} \bigcup_{U_{Q^{\prime}} \in \mathcal{U}_{i}} 2 \lambda Q^{\prime} \tag{7.3}
\end{equation*}
$$

After recursively applying (7.3) and then letting $j \rightarrow \infty$, we obtain

$$
\bigcup_{U_{Q^{\prime \prime}} \in \mathcal{N}_{2}\left(G_{Q}\right)} U_{Q^{\prime \prime}} \subset \bigcup_{U_{Q^{\prime \prime} \in \mathcal{N}_{2}\left(G_{Q}\right)}} 2 \lambda Q^{\prime \prime} \subset \bigcup_{i=1}^{\infty} \bigcup_{U_{Q^{\prime}} \in \mathcal{A}_{i}} 6 \lambda Q^{\prime} \quad \cup \bigcup_{U_{Q^{\prime}} \notin \mathcal{N}_{2}\left(G_{Q}\right)} 16.1 Q_{*}^{\prime}
$$

In particular, by countable subadditivity of measures and by the now familiar fact that $\mathcal{H}^{1}\left(\Pi_{G_{Q}}(A)\right) \leq \operatorname{diam} \Pi_{G_{Q}}(A) \leq \operatorname{diam} A$ for all Borel sets $A \subset \mathbb{X}$,

$$
\begin{aligned}
& \mathcal{H}^{1}\left(\Pi_{G_{Q}}\left(\bigcup \mathcal{N}_{2}\left(G_{Q}\right)\right)\right) \leq 3 \sum_{U_{Q^{\prime \prime}} \in \mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \ldots} \operatorname{diam} 2 \lambda Q^{\prime \prime}+16.1 \sum_{U_{Q^{\prime}} \notin \mathcal{N}_{2}\left(G_{Q}\right)} \operatorname{diam} U_{Q^{\prime}} \\
&<(3 \cdot 0.04+16.1 \cdot 0.05) \operatorname{diam} H_{Q}=0.925 \operatorname{diam} H_{Q}
\end{aligned}
$$

This contradicts (7.1). Therefore, the process above halts and $\mathcal{A}=\mathcal{A}_{n}$ for some $n \geq 1$. We remark that \mathcal{A} is finite, because $\mathcal{A} \subset \bigcup_{i=1}^{n} \mathcal{U}_{i}$ and each \mathcal{U}_{i} is finite. This proves (3.12).
7.2. Proof of (3.13). The proof of (3.13) leans on techniques developed in $\S 4$. To begin, we describe the large-scale geometry of $*$-almost flat arcs in balls around \mathcal{A} cores. Recall that every \mathcal{A} core belongs to $\mathcal{N}_{2}\left(G_{Q}\right)$. The first lemma below (Lemma 7.1) is a variant of Lemma 4.11 in the large-scale window $2 \lambda Q^{\prime \prime}$ instead of the small-scale window $16 Q_{*}^{\prime \prime}$. The second lemma (Lemma 7.2) modifies the arcs obtained in Lemma 7.1 to avoid cores $U_{Q^{\prime}} \subset 2 \lambda Q^{\prime \prime}$ such that $\operatorname{diam} Q^{\prime}=\operatorname{diam} Q^{\prime \prime}$. This is necessary to get good control on ρ_{X} for the subarcs X that we apply Lemma \square to in the third lemma below (Lemma 7.3).

Lemma 7.1. If $U_{Q^{\prime \prime}} \in \mathcal{A}$, then there exists a finite set \mathcal{Y} subarcs of arc fragments in $\Gamma_{1.98 \lambda Q^{\prime \prime}}^{*}$ such that the neighborhoods $\left\{B_{2^{-M-35} \operatorname{diam} Q_{*}^{\prime \prime}}(Y): Y \in \mathcal{Y}\right\}$ are pairwise disjoint, $\operatorname{diam} Y \geq 0.00199 \operatorname{diam} 2 \lambda Q^{\prime \prime}$ for all $Y \in \mathcal{Y}$, and in total $\sum_{Y \in \mathcal{Y}} \operatorname{diam} Y \geq 1.23 \operatorname{diam} 2 \lambda Q^{\prime \prime}$. (The cardinality of \mathcal{Y} is 2 or 3.)

Proof. Let $\tau=\left.f\right|_{[a, b]} \in S\left(\lambda Q^{\prime \prime}\right)$ be a wide arc for $U_{Q^{\prime \prime}}$. By our convention in Remark 3.7, $f(a)$ lies to the left of $f(b)$. Let $T_{1}=\tau([c, d])$ be a subarc of Image $(\tau) \cap 1.98 \lambda Q^{\prime \prime}$, where

$$
\begin{aligned}
c & :=\sup \left\{t \in[a, b]: \tau(t) \in P_{U_{Q^{\prime \prime}}}^{-} \cap \partial\left(1.98 \lambda Q^{\prime \prime}\right)\right\} \text { and } \\
d & :=\inf \left\{t \in[a, b]: \tau(t) \in P_{U_{Q^{\prime \prime}}}^{+} \cap \partial\left(1.98 \lambda Q^{\prime \prime}\right)\right\}
\end{aligned}
$$

By (4.1) and (1.2), there exists a line L such that $\operatorname{dist}(p, L) \leq 2^{-53} \operatorname{diam} 1.98 \lambda Q^{\prime \prime}$ for all $p \in \operatorname{Image}(\tau)$. Since Image $(\tau) \cap 1.00002 Q_{*}^{\prime \prime} \neq \emptyset$, repeating the proof of Lemma 4.3 mutatis mutandis informs us that T_{1} (easily) intersects $1.1 Q_{*}^{\prime \prime} \subset 2^{-11}\left(1.98 \lambda Q^{\prime \prime}\right)$. Further, by mimicking the proof of Lemma 4.10, we find that

$$
\operatorname{diam} T_{1} \geq\left(1-2^{-10}-2^{-52}\right) \operatorname{diam} 1.98 \lambda Q^{\prime \prime} \geq 0.98903 \operatorname{diam} 2 \lambda Q^{\prime \prime}
$$

Choose a line L_{τ} such that (4.3) holds for τ, choose a J-projection Π_{τ} onto L_{τ}, and identify L_{τ} with \mathbb{R}. By 4.4, $\left|\Pi_{\tau}(w)-w\right| \leq 2^{-M-47} \operatorname{diam} 2 \lambda Q^{\prime \prime}$ for all $w \in \operatorname{Image}(\tau)$. Thus, the interval $\left[s_{1}, s_{2}\right]:=\Pi_{\tau}\left(T_{1}\right)$ is large in the sense that

$$
s_{2}-s_{1} \geq \operatorname{diam} T_{1}-2^{-M-46} \operatorname{diam} 2 \lambda Q^{\prime \prime} \geq 0.98902 \operatorname{diam} 2 \lambda Q^{\prime \prime}
$$

Since $\beta_{S^{*}\left(\lambda Q^{\prime \prime}\right)}\left(2 \lambda Q^{\prime \prime}\right) \geq 2^{-M}$, but the excess of Image (τ) over L_{τ} is comparatively small, we can locate an $\operatorname{arc} \xi \in S^{*}\left(\lambda Q^{\prime \prime}\right)$ and point $x \in \operatorname{Image}(\xi)$ such that $\operatorname{dist}\left(x, L_{\tau}\right) \geq$ $2^{-M} \operatorname{diam} 2 \lambda Q^{\prime \prime}$. Let T_{2} be a subarc of Image $(\xi) \cap 1.98 \lambda Q^{\prime \prime}$ with one endpoint in $\partial\left(1.98 \lambda Q^{\prime \prime}\right)$ and one endpoint in $\partial\left(\lambda Q^{\prime \prime}\right)$. We can do this, because the image of every arc in $\Lambda\left(\lambda Q^{\prime \prime}\right)$ intersects $\lambda Q^{\prime \prime}$ and $Q^{\prime \prime} \notin \mathscr{B}_{0}^{\lambda}$. Then

$$
\begin{equation*}
\operatorname{diam} T_{2} \geq 0.98 \text { radius } \lambda Q^{\prime \prime}=0.245 \operatorname{diam} 2 \lambda Q^{\prime \prime} \tag{7.4}
\end{equation*}
$$

and $\operatorname{diam} T_{1}+\operatorname{diam} T_{2} \geq 1.23403 \operatorname{diam} 2 \lambda Q^{\prime \prime}$. If $B_{2^{-M-35}} \operatorname{diam} Q_{*}^{\prime \prime}\left(T_{1}\right) \cap B_{2^{-M-35}} \operatorname{diam} Q_{*}^{\prime \prime}\left(T_{2}\right)=$ \emptyset, then we may take $\mathcal{Y}=\left\{T_{1}, T_{2}\right\}$.

Suppose otherwise that $B_{2^{-M-35}} \operatorname{diam} Q_{*}^{\prime \prime}\left(T_{1}\right) \cap B_{2^{-M-35}} \operatorname{diam} Q_{*}^{\prime \prime}\left(T_{2}\right) \neq \emptyset$. For ease of notation, we switch from scale $\operatorname{diam} Q_{*}^{\prime \prime}$ to scale $\operatorname{diam} 2 \lambda Q^{\prime \prime}$, recalling that $2^{-M-35} \operatorname{diam} Q_{*}^{\prime \prime} \leq$ $2^{-M-48} \operatorname{diam} 2 \lambda Q^{\prime \prime}$. Let L_{ξ} be a line such that (4.3) holds for ξ and let Π_{ξ} be a J-projection onto L_{ξ}. Then

$$
\begin{aligned}
& B_{2^{-M-48} \operatorname{diam} 2 \lambda Q^{\prime \prime}}\left(T_{1}\right) \subset B_{\left(2^{-M-48}+2^{-M-54}\right) \operatorname{diam} 2 \lambda Q^{\prime \prime}}\left(L_{\tau}\right) \subset B_{2^{-M-47}} \operatorname{diam} 2 \lambda Q^{\prime \prime} \\
& B_{2^{-M-48} \operatorname{diam} 2 \lambda Q^{\prime \prime}}\left(L_{2}\right) \subset B_{\left(2^{-M-48}+2^{-M-48}\right) \operatorname{diam} 2 \lambda Q^{\prime \prime}}\left(L_{\xi}\right) \subset B_{2^{-M-47}} \operatorname{diam} 2 \lambda Q^{\prime \prime}\left(L_{\xi}\right),
\end{aligned}
$$

and L_{τ} intersects $B_{2}:=B_{2^{-M-45} \operatorname{diam} 2 \lambda Q^{\prime \prime}}\left(L_{\xi}\right)$ by the triangle inequality. Continuing to identify L_{τ} with \mathbb{R}, define

$$
t_{1}:=\min \left\{z: z \in L_{\tau} \cap B_{2}\right\} \quad \text { and } \quad t_{2}:=\max \left\{z: z \in L_{\tau} \cap B_{2}\right\}
$$

As in the proof of Lemma 4.11, there are two cases.
For the easier case, suppose that $t_{2} \leq s_{1}+0.002 \operatorname{diam} 2 \lambda Q^{\prime \prime}$ or $t_{1} \geq s_{2}-0.002 \operatorname{diam} 2 \lambda Q^{\prime \prime}$. Choose a subarc \tilde{T}_{1} of T_{1} with $\Pi_{\tau}\left(\tilde{T}_{1}\right)=\left[s_{1}+0.002 \operatorname{diam} 2 \lambda Q^{\prime \prime}, s_{2}-0.002 \operatorname{diam} 2 \lambda Q^{\prime \prime}\right]$. Then by (4.1) and (4.4) \tilde{T}_{1} satisfies

$$
\tilde{T}_{1} \subset B_{2^{-M-53} \operatorname{diam} 2 \lambda Q^{\prime \prime}}\left(\left[s_{1}+0.002 \operatorname{diam} 2 \lambda Q^{\prime \prime}, s_{2}-0.002 \operatorname{diam} 2 \lambda Q^{\prime \prime}\right]\right)
$$

and, by the triangle inequality, $\operatorname{diam} \tilde{T}_{1} \geq s_{2}-s_{1}-\left(0.004+2^{-M-52}\right) \operatorname{diam} 2 \lambda Q^{\prime \prime} \geq$ $0.98501 \operatorname{diam} 2 \lambda Q^{\prime \prime}$. To verify disjointness, we use the triangle inequality again to calculate

$$
\operatorname{gap}\left(B_{2^{-M-47}} \operatorname{diam} 2 \lambda Q^{\prime \prime}\left(L_{\tau}\right), B_{2^{-M-47}} \operatorname{diam} 2 \lambda Q^{\prime \prime}\left(L_{\xi}\right)\right) \geq\left(2^{-M-45}-2^{-M-46}\right) \operatorname{diam} 2 \lambda Q^{\prime \prime}
$$

Recalling (7.4) we see $\operatorname{diam} \tilde{T}_{1}+\operatorname{diam} T_{2} \geq 1.23 \operatorname{diam} 2 \lambda Q^{\prime \prime}$. Therefore, in this case we may take $\mathcal{Y}=\left\{\tilde{T}_{1}, T_{2}\right\}$.

For the harder case, suppose that

$$
\begin{equation*}
t_{2}>s_{1}+0.002 \operatorname{diam} 2 \lambda Q^{\prime \prime} \quad \text { and } \quad t_{1}<s_{2}-0.002 \operatorname{diam} 2 \lambda Q^{\prime \prime} \tag{7.5}
\end{equation*}
$$

Our immediate goal is to show that $t_{2}-t_{1}$ is relatively small. Let $y, z \in L_{\tau}$ be such that $y=t_{1}$ and $z=t_{2}$ by our identification of L_{τ} with \mathbb{R}. Since $y, z \in L_{\tau} \cap B_{2}$, the points $y_{\xi}, z_{\xi}:=\Pi_{\xi}(y)$ satisfy

$$
\max \left\{\left|y-y_{\xi}\right|,\left|z-z_{\xi}\right|\right\} \leq 2^{-M-45} \operatorname{diam} 2 \lambda Q^{\prime \prime} .
$$

Now, define the line $\tilde{L}_{\xi}:=L_{\xi}+\left(y-y_{\xi}\right)$ parallel to L_{ξ} which intersects y. Let $\Pi_{\tilde{\xi}}(v):=$ $\Pi_{\xi}(v)+\left(y-y_{\xi}\right)$ and note that $\Pi_{\tilde{\xi}}$ is a J-projection onto \tilde{L}_{ξ}. Recall that $x \in$ Image ξ, and define $x_{\tilde{\xi}}:=\Pi_{\tilde{\xi}}(x), x_{\tilde{\xi} \tau}:=\Pi_{\tau}\left(x_{\tilde{\xi}}\right), z_{\tilde{\xi}}:=\Pi_{\tilde{\xi}}(z)$, and $z_{\tilde{\xi} \tau}:=\Pi_{\tau}\left(z_{\tilde{\xi}}\right)$. Then, we have:

$$
\begin{align*}
&\left|z_{\tilde{\xi}}-y\right| \geq|z-y|-\left|z_{\tilde{\xi}}-z_{\xi}\right|-\left|z_{\xi}-z\right| \geq t_{2}-t_{1}-2^{-M-44} \operatorname{diam} 2 \lambda Q^{\prime \prime} \tag{7.6}\\
&\left|z_{\tilde{\xi}}-z_{\tilde{\xi} \tau}\right| \leq 2 \operatorname{dist}\left(z_{\tilde{\xi}}, L_{\tau}\right) \leq 2\left|z-z_{\tilde{\xi}}\right| \leq 2\left|z-z_{\xi}\right|+2\left|y-y_{\xi}\right| \leq 2^{-M-43} \operatorname{diam} 2 \lambda Q^{\prime \prime}, \tag{7.7}\\
&\left|x_{\tilde{\xi}}-y\right| \leq|x-y|+\left|x_{\tilde{\xi}}-x\right| \leq\left(1+2^{-M-44}\right) \operatorname{diam} 2 \lambda Q^{\prime \prime}, \text { and } \tag{7.8}
\end{align*}
$$

By "similar triangles", it follows that

$$
t_{2}-t_{1}-2^{-M-44} \operatorname{diam} 2 \lambda Q^{\prime \prime} \leq\left|z_{\tilde{\xi}}-y\right|=\left|x_{\tilde{\xi}}-y\right| \frac{\left|z_{\tilde{\xi}}-z_{\tilde{\xi} \tau}\right|}{\left|x_{\tilde{\xi}}-x_{\tilde{\xi} \tau}\right|}<\left(2 \operatorname{diam} 2 \lambda Q^{\prime \prime}\right) \frac{2^{-M-43}}{2^{-M-1}}
$$

Rearranging, we see that $t_{2}-t_{1}<\left(2^{-M-44}+2^{-41}\right) \operatorname{diam} 2 \lambda Q^{\prime \prime}<2^{-40} \operatorname{diam} 2 \lambda Q^{\prime \prime}$. Together with (7.5), it follows that we may choose \tilde{t}_{1} and \tilde{t}_{2} such that

$$
\tilde{t}_{1}<t_{1}<t_{2}<\tilde{t}_{2}
$$

and $\tilde{t}_{2}-\tilde{t}_{1} \leq 2^{-39} \operatorname{diam} 2 \lambda Q^{\prime \prime}$. Let $\tilde{T}_{1.1}$ and $\tilde{T}_{1.2}$ be a subarcs of T_{1} with $\Pi_{\tau}\left(\tilde{T}_{1.1}\right)=\left[s_{1}, \tilde{t}_{1}\right]$ and $\Pi_{\tau}\left(\tilde{T}_{1.2}\right)=\left[\tilde{t}_{2}, s_{2}\right]$.

To see that $B_{2^{-M-48} \operatorname{diam} 2 \lambda Q^{\prime \prime}}\left(T_{1.1}\right)$ and $B_{2^{-M-48} \operatorname{diam} 2 \lambda Q^{\prime \prime}}\left(T_{1.2}\right)$ are disjoint, we calculate

$$
\begin{aligned}
& \operatorname{gap}\left(B_{2^{-M-47}} \operatorname{diam} 2 \lambda Q^{\prime \prime}\right. \\
&\left(\left[s_{1}, \tilde{t}_{1}\right]\right),\left.B_{2^{-M-47}} \operatorname{diam} 2 \lambda Q^{\prime \prime}\left(\left[\tilde{t}_{2}, s_{2}\right]\right)\right) \\
& \geq\left(2^{-39}-2^{-M-46}\right) \operatorname{diam} 2 \lambda Q^{\prime \prime}>0
\end{aligned}
$$

Similarly, to see that $B_{2^{-M-48} \operatorname{diam} 2 \lambda Q^{\prime \prime}}\left(\tilde{T}_{1.1} \cup \tilde{T}_{1.2}\right)$ and $B_{2^{-M-48} \operatorname{diam} 2 \lambda Q^{\prime \prime}}\left(T_{2}\right)$ are disjoint, we estimate

$$
\begin{aligned}
& \operatorname{gap}\left(B_{2^{-M-48} \operatorname{diam} 2 \lambda Q^{\prime \prime}}\left(\tilde{T}_{1.1} \cup \tilde{T}_{1.2}\right), B_{2^{-M-48} \operatorname{diam} 2 \lambda Q^{\prime \prime}}\left(T_{2}\right)\right) \\
& \quad \geq \operatorname{gap}\left(B_{2^{-M-47} \operatorname{diam} 2 \lambda Q^{\prime \prime}}\left(L_{\xi}\right), B_{2^{-M-47} \operatorname{diam} 2 \lambda Q^{\prime \prime}}\left(\left[s_{1}, \tilde{t}_{1}\right] \cup\left[\tilde{t}_{2}, s_{2}\right]\right)\right) \\
& \quad \geq\left(2^{-M-45}-2^{-M-46}\right) \operatorname{diam} 2 \lambda Q^{\prime \prime}>0 .
\end{aligned}
$$

We not turn to estimating the diameters of these subarcs. By (4.3) and (4.4)

$$
\begin{array}{ll}
\tilde{T}_{1.1} \subset B_{2^{-M-53} \operatorname{diam} 2 \lambda Q^{\prime \prime}}\left(\left[s_{1}, \tilde{t}_{1}\right]\right), & \operatorname{diam} \tilde{T}_{1.1} \geq \tilde{t}_{1}-s_{1}-2^{-M-52} \operatorname{diam} 2 \lambda Q^{\prime \prime} \\
\tilde{T}_{1.2} \subset B_{2^{-M-53} \operatorname{diam} 2 \lambda Q^{\prime \prime}}\left(\left[\tilde{t}_{2}, s_{2}\right]\right), & \operatorname{diam} \tilde{T}_{1.2} \geq s_{2}-\tilde{t}_{2}-2^{-M-52} \operatorname{diam} 2 \lambda Q^{\prime \prime} \tag{7.11}
\end{array}
$$

Recalling (7.5), $\min \left\{\operatorname{diam} \tilde{T}_{1.1}, \operatorname{diam} \tilde{T}_{1.2}\right\} \geq 0.00199 \operatorname{diam} 2 \lambda Q^{\prime \prime}$. Moreover, by (7.4) and the fact that $2^{-39} \ll 0.00001$

$$
\operatorname{diam} \tilde{T}_{1.1}+\operatorname{diam} \tilde{T}_{1.2}+\operatorname{diam} T_{2}
$$

Figure 7.1. Separated subarcs \mathcal{X} associated to a ball $2 \lambda Q^{\prime \prime}$ with $U_{Q^{\prime \prime}} \in \mathcal{A}$. When $\beta_{S^{*}(\lambda Q)}(2 \lambda Q)$ is sufficiently small, cores $U_{Q^{\prime}}$ with $\operatorname{diam} Q_{*}^{\prime}=\operatorname{diam} Q_{*}^{\prime \prime}$ may intersect both of the underlying arcs τ and ξ used to build \mathcal{Y}.

$$
\begin{aligned}
& \geq s_{2}-s_{1}-0.00001 \operatorname{diam} 2 \lambda Q^{\prime \prime}-2^{-M-51} \operatorname{diam} 2 \lambda Q^{\prime \prime}+\operatorname{diam} T_{2} \\
& \geq 1.234 \operatorname{diam} 2 \lambda Q^{\prime \prime}
\end{aligned}
$$

In this case, we may take $\mathcal{Y}=\left\{\tilde{T}_{1.1}, \tilde{T}_{1.2}, T_{2}\right\}$.

Lemma 7.2. If $U_{Q^{\prime \prime}} \in \mathcal{A}$, then there exists a finite set \mathcal{X} of efficient subarcs of arc fragments in $\Gamma_{1.98 \lambda Q^{\prime \prime}}^{*}$ such that the set

$$
\begin{aligned}
\left\{1.00002 Q_{*}^{\prime}:\right. & \left.Q^{\prime} \in \operatorname{Child}(Q), \operatorname{diam} Q^{\prime}=\operatorname{diam} Q^{\prime \prime}\right\} \\
& \cup\left\{B_{2^{-M-35} \operatorname{diam} Q_{*}^{\prime \prime}}(X): X \in \mathcal{X}\right\} \text { is pairwise disjoint },
\end{aligned}
$$

$\operatorname{diam} X \geq 0.25 \operatorname{diam} Q_{*}^{\prime \prime}$ for all $X \in \mathcal{X}$, and $\sum_{X \in \mathcal{X}} \operatorname{diam} X \geq 1.11 \operatorname{diam} 2 \lambda Q^{\prime \prime}$.
Proof. Let $U_{Q^{\prime \prime}} \in \mathcal{A}$, say $Q^{\prime \prime}=B\left(x^{\prime \prime}, A_{\mathscr{H}} 2^{-k}\right)$, and let \mathcal{Y} be given by the previous lemma. Because $\left\{B_{2^{-M-35}} \operatorname{diam} Q_{*}^{\prime \prime}(Y): Y \in \mathcal{Y}\right\}$ is pairwise disjoint, it suffices to construct a family \mathcal{X}_{Y} of efficient subarcs X of Y for each $Y \in \mathcal{Y}$ such that

$$
\left\{1.00002 Q_{*}^{\prime}: Q^{\prime} \in \operatorname{Child}(Q), \operatorname{diam} Q^{\prime}=\operatorname{diam} Q^{\prime \prime}\right\} \cup\left\{B_{2^{-M-35} \operatorname{diam} Q_{*}^{\prime \prime}}(X): X \in \mathcal{X}_{Y}\right\}
$$

is pairwise disjoint, $\operatorname{diam} X \geq \operatorname{diam} Q_{*}^{\prime \prime}$ for all $X \in \mathcal{X}_{Y}$, and in total $\sum_{X \in \mathcal{X}_{Y}} \operatorname{diam} X \geq$ $0.904 \operatorname{diam} Y$. Then $\mathcal{X}=\bigcup_{Y \in \mathcal{Y}} \mathcal{X}_{Y}$ satisfies the required properties. In particular,

$$
\sum_{X \in \mathcal{X}} \operatorname{diam} X \geq 0.904 \sum_{Y \in \mathcal{Y}} \operatorname{diam} Y \geq 1.111 \operatorname{diam} 2 \lambda Q^{\prime \prime}
$$

since $\sum_{Y \in \mathcal{Y}} \operatorname{diam} Y \geq 1.23 \operatorname{diam} 2 \lambda Q^{\prime \prime}$.
Fix $Y=f([a, b]) \in \mathcal{Y}$ and let $\tau \in S^{*}(\lambda Q)$ be an arc, for which Y is a subarc of Image $(\tau) \cap$ $1.98 \lambda Q^{\prime \prime}$. Note that $\operatorname{diam} Y \geq 0.00199 \operatorname{diam} 2 \lambda Q^{\prime \prime}>2^{-9} \operatorname{diam} 2 \lambda Q^{\prime \prime} \geq 2^{4} \operatorname{diam} Q_{*}^{\prime \prime}$. Let L be a line such that (4.3) holds for τ and let Π_{L} be a J-projection onto L. By (4.4), we have $\left|\Pi_{L}(x)-x\right| \leq 2^{-M-47} A_{\mathscr{H}}^{-1} \operatorname{diam} 2 \lambda Q^{\prime \prime} \leq 2^{-M-38} \operatorname{diam} Y$ for all $x \in \operatorname{Image}(\tau)$. Since Y
is compact and connected, $I_{0}:=\Pi_{L}(Y)=[c, d]$. Considering any pair of points $u, v \in Y$ such that $|u-v|=\operatorname{diam} Y$, we see that
$\operatorname{diam} I_{0} \geq\left|\Pi_{L}(u)-\Pi_{L}(v)\right| \geq|u-v|-\left|\Pi_{L}(u)-u\right|-\left|\Pi_{L}(v)-v\right| \geq\left(1-2^{-M-37}\right) \operatorname{diam} Y$.
Hence $\operatorname{diam} I_{0}>0.99999 \operatorname{diam} Y>15.999 \operatorname{diam} Q_{*}^{\prime \prime}$. Form the minimal partition \mathcal{P} of I_{0} into closed intervals with disjoint interiors that includes the set of intervals

$$
\begin{aligned}
& \mathcal{J}:=\left\{I_{0} \cap \Pi_{L}\left(1.00004 Q_{*}^{\prime}\right): Q^{\prime} \in \operatorname{Child}(Q), \operatorname{diam} Q^{\prime}=\operatorname{diam} Q^{\prime \prime}\right. \\
&\left.1.00002 Q_{*}^{\prime} \cap B_{2^{-M-35}} \operatorname{diam} Q_{*}^{\prime \prime}(Y) \neq \emptyset\right\}
\end{aligned}
$$

If $\mathcal{J}=\emptyset$, then we may simply take $\mathcal{X}_{Y}=\{\tilde{Y}\}$, where \tilde{Y} is any efficient subarc of Y with $\operatorname{diam} \tilde{Y}=\operatorname{diam} Y$. Thus, suppose that \mathcal{J} is nonempty. Because every ball in \mathbb{X} contains a diameter parallel to L, for each $J=I_{0} \cap \Pi_{L}\left(1.00004 Q_{*}^{\prime}\right) \in \mathcal{J}$,

$$
\operatorname{diam} J \leq \operatorname{diam} \Pi_{L}\left(1.00004 Q_{*}^{\prime}\right)=1.00004 \operatorname{diam} Q_{*}^{\prime}=1.00004 \cdot 2^{-k-11}
$$

with equality unless $J \cap\{c, d\} \neq \emptyset$. The intervals in \mathcal{J} are uniformly separated. Indeed, for each $J=I_{0} \cap 1.00004 Q_{*}^{\prime}$, let x_{J} denote the center of Q_{*}^{\prime}, let $y_{J} \in B_{2^{-M-35}} \operatorname{diam} Q_{*}^{\prime \prime}(Y) \cap$ $1.00002 Q_{*}^{\prime}$, and let $z_{J}=\Pi_{L}\left(y_{j}\right) \in J$; then $\operatorname{diam} J<2^{-k-10}$ and

$$
\begin{aligned}
\left|x_{J}-z_{J}\right| & \leq\left|x_{J}-y_{J}\right|+\left|y_{J}-z_{J}\right| \\
& \leq 1.00002 \cdot 2^{-k-12}+2^{-k-12-M-35}+2^{-M-47} A_{\mathscr{H}}^{-1} \cdot 4 \lambda A_{\mathscr{H}} 2^{-k}<2^{-k-10}
\end{aligned}
$$

Because $\left\{x_{J}: J \in \mathcal{J}\right\}$ is 2^{-k}-separated, it follows that for all distinct $J_{1}, J_{2} \in \mathcal{J}$,

$$
\begin{aligned}
\operatorname{gap}\left(J_{1}, J_{2}\right) & \geq 2^{-k}-\left|x_{J_{1}}-z_{J_{1}}\right|-\operatorname{diam} J_{1}-\left|x_{J_{2}}-z_{J_{2}}\right|-\operatorname{diam} J_{2} \\
& \geq\left(1-2^{-8}\right) 2^{-k}=\left(1-2^{-8}\right) 2^{11} \cdot 2^{-k-11} \geq 2^{10} \operatorname{diam} Q_{*}^{\prime \prime}
\end{aligned}
$$

For each interval $I \in \mathcal{P} \backslash \mathcal{J}$, choose an efficient subarc X_{I} of Y such that $\Pi_{L}\left(X_{I}\right) \subset I$ and $\operatorname{diam} X_{I} \geq \operatorname{diam} I$. If $I \in \mathcal{P} \backslash \mathcal{J}$ and $I \cap\{c, d\} \neq \emptyset$, then I lies between two distinct intervals $J_{1}, J_{2} \in \mathcal{J}$ and $\operatorname{diam} X_{I} \geq \operatorname{diam} I \geq \operatorname{gap}\left(J_{1}, J_{2}\right) \geq 2^{10} \operatorname{diam} Q_{*}^{\prime \prime}$. At most two exceptional $I \in \mathcal{P} \backslash \mathcal{I}$ contain one of the endpoints of I_{0}; the diameter of an exceptional interval I may be relatively large or small. We assign

$$
\mathcal{X}_{Y}:=\left\{X_{I}: I \in \mathcal{P} \backslash \mathcal{J} \text { and } \operatorname{diam} I \geq 0.25 \operatorname{diam} Q_{*}^{\prime \prime}\right\}
$$

which contains all of the subarcs X_{I} that we defined with at most two exceptions. (We exclude X_{I} from \mathcal{X}_{Y} if exceptionally $I \cap\{c, d\} \neq \emptyset$ and diam $I<0.25 \operatorname{diam} Q_{*}^{\prime \prime}$.) By design, the $2^{-M-35} \operatorname{diam} Q_{*}^{\prime \prime}$-neighborhoods of the subarcs in \mathcal{X}_{Y} do not intersect $\bigcup\left\{1.00002 Q_{*}^{\prime}\right.$: $\left.Q^{\prime} \in \operatorname{Child}(Q), \operatorname{diam} Q^{\prime}=\operatorname{diam} Q^{\prime \prime}\right\}$. Furthermore, any pair of distinct $X_{I_{1}}, X_{I_{2}} \in \mathcal{X}_{Y}$ enjoy

$$
\operatorname{gap}\left(X_{I_{1}}, X_{I_{2}}\right) \geq \operatorname{gap}\left(\Pi_{L}\left(X_{I_{1}}\right), \Pi_{L}\left(X_{I_{2}}\right)\right) \geq 1.00004 \operatorname{diam} Q_{*}^{\prime \prime}
$$

because I_{1} and I_{2} are separated by an interval in $J \in \mathcal{J}$ that does not intersect $\{c, d\}$.
It remains to estimate the total diameter in \mathcal{X}_{Y} in terms of $\operatorname{diam} Y$. Let us agree to call an interval $I \in \mathcal{P} \backslash \mathcal{I}$ short, medium, or long if $\operatorname{diam} I<0.25 \operatorname{diam} Q_{*}^{\prime \prime}, 0.25 \operatorname{diam} Q_{*}^{\prime \prime} \leq$ $\operatorname{diam} I<2^{10} \operatorname{diam} Q_{*}^{\prime \prime}$, or $\operatorname{diam} I \geq 2^{10} \operatorname{diam} Q_{*}^{\prime \prime}$, respectively. Above, we showed that any interval $I \in \mathcal{P} \backslash \mathcal{J}$ lying between two intervals in \mathcal{J} is long. Hence any short
or medium interval must contain one of the endpoints of I_{0}. Also, if I is short, then $\operatorname{diam} I<0.25 \operatorname{diam} Q_{*}^{\prime \prime}<0.016 \operatorname{diam} I_{0}$, because diam $I_{0}>15.999 \operatorname{diam} Q_{*}^{\prime \prime}$ (look above). After deleting any short intervals from the ends of I_{0}, the remaining interval

$$
I_{00}:=\overline{I_{0} \backslash \bigcup\left\{I \in \mathcal{P} \backslash \mathcal{J}: X_{I} \notin \mathcal{X}_{Y}\right\}}
$$

has $\operatorname{diam} I_{00} \geq 0.968 \operatorname{diam} I_{0} \geq 0.96799 \operatorname{diam} Y>15.486 \operatorname{diam} Q_{*}^{\prime \prime}$. Now, if $J \in \mathcal{J}$, then $\operatorname{diam} J \leq 1.00004 \operatorname{diam} Q_{*}^{\prime \prime}<0.065 \operatorname{diam} I_{00}$. If $J \in \mathcal{J}$ and I is long, then $\operatorname{diam} J \leq$ $1.00004 \operatorname{diam} Q_{*}^{\prime \prime}<0.001 \operatorname{diam} I$. Since there the number of intervals in \mathcal{J} is at most one more than the number of long intervals, it follows that

$$
\sum_{X_{I} \in \mathcal{X}_{Y}} \operatorname{diam} X_{I}>\frac{1-0.065}{1.001} \operatorname{diam} I_{00}>0.90416 \operatorname{diam} Y .
$$

Lemma 7.3. If $U_{Q^{\prime \prime}} \in \mathcal{A}$, then there exists a family $\mathcal{L}_{Q^{\prime \prime}}$ of cores $U_{Q^{\prime}} \subset 1.99 \lambda Q^{\prime \prime}$ with $Q^{\prime} \in \operatorname{Child}(Q)$ such that

$$
\begin{equation*}
\operatorname{diam} 2 \lambda Q^{\prime \prime} \leq 2 \ell\left(R_{Q} \cap 1.99 \lambda Q^{\prime \prime}\right)+0.91 \sum_{U_{Q^{\prime}} \in \mathcal{L}_{Q^{\prime \prime}}} \operatorname{diam} H_{Q^{\prime}} \tag{7.12}
\end{equation*}
$$

Proof. Fix $U_{Q^{\prime \prime}} \in \mathcal{A}$ and let \mathcal{X} be the family of efficient subarcs of arc fragments in $\Gamma_{1.98 \lambda Q^{\prime \prime}}^{*}$ given by Lemma 7.2. With the intention to invoke Lemma we define

$$
\mathcal{L}_{Q^{\prime \prime}}:=\left\{U_{Q^{\prime}}: Q^{\prime} \in \operatorname{Child}(Q) \text { and } U_{Q^{\prime}} \cap B_{9 \operatorname{diam} Q_{*}^{\prime \prime}}\left(1.98 \lambda Q^{\prime \prime}\right) \neq \emptyset\right\} .
$$

Property (F) with $\mathcal{F}=\mathcal{A}$ and $T=G_{Q}$ tells us $\operatorname{diam} Q^{\prime} \leq \operatorname{diam} Q^{\prime \prime}$ for all $Q^{\prime} \in \operatorname{Child}(Q)$ such that $16 Q_{*}^{\prime} \cap 2 \lambda Q^{\prime \prime} \neq \emptyset$. This more than ensures $U_{Q^{\prime}} \subset 1.99 \lambda Q^{\prime \prime}$ for every $U_{Q^{\prime}} \in \mathcal{L}_{Q^{\prime \prime}}$.

Let $X \in \mathcal{X}$. By Lemma 7.2 , $\operatorname{diam} X \geq 0.25 \operatorname{diam} Q_{*}^{\prime \prime}$ and

$$
\begin{equation*}
\rho_{X} \leq 2^{-K M} \cdot 2 \lambda A_{\mathscr{H}} \cdot 2^{12} \operatorname{diam} Q_{*}^{\prime \prime} \leq 2^{-M-84} \operatorname{diam} Q_{*}^{\prime \prime} \tag{7.13}
\end{equation*}
$$

since $X \cap 1.00002 Q_{*}^{\prime}=\emptyset$ whenever $Q^{\prime} \in \operatorname{Child}(Q)$ and $\operatorname{diam} Q^{\prime}=\operatorname{diam} Q^{\prime \prime}$. It follows that $\operatorname{diam} X-2 \rho_{X} \geq 0.99999 \operatorname{diam} X$. By Lemma with $T=X$ and $\mathcal{F}=\emptyset$, we obtain

$$
\begin{equation*}
0.99999 \operatorname{diam} X \leq 2.2 \ell\left(R_{Q} \cap B_{9 r_{X}}(X)\right)+1.00016 \sum_{U_{Q^{\prime}} \subset B_{9_{r}}(X)} \operatorname{diam} H_{Q^{\prime}} \tag{7.14}
\end{equation*}
$$

Finally, by Lemma 7.2 , the arcs in \mathcal{X} are well-separated from each other compared with (7.13) and have total diameter $\sum_{X \in \mathcal{X}} \operatorname{diam} X \geq 1.11$ diam $2 \lambda Q^{\prime \prime}$. Thus, summing (7.14) over all $X \in \mathcal{X}$ and rearranging, we obtain (7.12).

Because $\left\{2 \lambda Q^{\prime \prime}: U_{Q^{\prime \prime}} \in \mathcal{A}\right\}$ is pairwise disjoint, (3.13) follows by applying (7.12) to each core $U_{Q^{\prime \prime}} \in \mathcal{A}$. This concludes the proof of Lemma II.

This completes our demonstration of the Main Theorem. In any Banach space, a curve of length 1 rarely looks under a magnifying glass like a union of two or more line segments.

Appendix A. Unions of overlapping balls in a metric space

Lemma A. 1 bounds the radius of a ball containing the union of chains of balls with geometric decay and good separation between balls of similar radii. Although it can be lowered slightly by increasing the parameter ξ, the factor 3 in the lower bound on the gap between balls in level k cannot be made arbitrarily small.

Lemma A. 1 (cf. Sch07a, Lemma 2.16]). Let \mathbb{X} be a metric space, let $\xi>6$, and let $r_{0}>0$. Suppose $\left\{B\left(x_{i}, r_{i}\right)\right\}_{i=1}^{I}$ is a finite $(I<\infty)$ or infinite $(I=\infty)$ sequence of closed balls in \mathbb{X} and $\left(k_{i}\right)_{i=1}^{I}$ is a sequence of integers bounded from below such that
(i) chain property: for all $j \geq 2$, each pair $\left(B_{1}, B_{2}\right)$ of balls in the initial segment $\left\{B\left(x_{i}, r_{i}\right): 1 \leq i \leq j\right\}$ can be connected by a chain of balls from the collection, i.e. there exists a finite sequence such that the first ball is B_{1}, the last ball is B_{2}, and consecutive balls in the sequence have nonempty intersection;
(ii) geometric decay: for all $i \geq 1$, we have $r_{i} \leq \xi^{-k_{i}} r_{0}$; and
(iii) separation within levels: for all $i, j \geq 1$ with $i \neq j$, if $k_{i}=k_{j}=k$, then $\operatorname{gap}\left(B\left(x_{i}, r_{i}\right), B\left(x_{j}, r_{j}\right)\right) \geq 3 \xi^{-k} r_{0}$, where $\operatorname{gap}(S, T)=\inf \{\operatorname{dist}(s, t): s \in S, t \in T\}$.
Then there exists a unique $M \geq 1$ such that $k_{M}=\min _{i \geq 1} k_{i}$, and moreover,

$$
\begin{equation*}
\bigcup_{i=1}^{I} B\left(x_{i}, r_{i}\right) \subset B\left(x_{M},(1+3 / \xi) \xi^{-k_{M}} r_{0}\right) \tag{A.1}
\end{equation*}
$$

Proof. Let parameters ξ and r_{0}, a sequence $\left\{B\left(x_{i}, r_{i}\right)\right\}_{i=1}^{I}$, and a sequence $\left(k_{i}\right)_{i=1}^{I}$ be given with the stated assumptions. Without loss of generality, we may assume that $r_{0}=1$. Because $\left\{k_{i}: i \geq 1\right\}$ is a set of integers bounded from below, we may choose and fix $M \geq 1$ such that $k_{M}=\min _{i \geq 1} k_{i}$. (We prove M is unique later.) Our main task is to prove that for all integers $1 \leq n \leq I$,

$$
\begin{equation*}
\bigcup_{i=1}^{n} B\left(x_{i}, r_{i}\right) \subset B\left(x_{m},\left(1+2 \xi^{-1}+4 \xi^{-2}+8 \xi^{-3}+\cdots\right) \xi^{-k_{m}}\right) \tag{A.2}
\end{equation*}
$$

where $1 \leq m \leq n$ is an index such that $k_{m}=\min _{i=1}^{n} k_{i}$ and $m=M$ whenever $n \geq M$. When $n=1$, there is only one ball and A.2) is trivial by (ii). Note that the series in (A.2) converges, because $\xi>2$. We proceed by strong induction. Let $1 \leq N<I$ and suppose that up to relabeling (A.2) holds for any chain-connected cluster of N or fewer balls satisfying (ii) and (iii). Set $n=N+1$ and choose any index $1 \leq m \leq N+1$ such that $k_{m}=\min _{i=1}^{N+1} k_{i}$, if $N+1<M$, and set $m=M$, if $N+1 \geq M$. Sort the collection $\left\{B\left(x_{i}, r_{i}\right): 1 \leq i \leq N+1\right\} \backslash\left\{B\left(x_{m}, r_{m}\right)\right\}$ into a finite number of maximal chain-connected components $\mathscr{U}_{1}, \ldots, \mathscr{U}_{l}$ and note that each \mathscr{U}_{i} contains at most N balls. See Figure A.1.

Fix a cluster $\mathscr{U}=\mathscr{U}_{i}$. By the inductive hypothesis, there exists $B\left(x_{j}, r_{j}\right) \in \mathscr{U}$ so that

$$
\bigcup \mathscr{U} \subset B\left(x_{j},\left(1+2 \xi^{-1}+4 \xi^{-2}+8 \xi^{-3}+\cdots\right) \xi^{-k_{j}}\right)
$$

Now, $B\left(x_{j}, r_{j}\right)$ and $B\left(x_{m}, r_{m}\right)$ both intersect $\bigcup \mathscr{U}$ by (i) and maximality of \mathscr{U}. Hence

$$
\begin{equation*}
\operatorname{gap}\left(B\left(x_{j}, r_{j}\right), B\left(x_{m}, r_{m}\right)\right) \leq \operatorname{diam} \bigcup \mathscr{U} \leq\left(2 \xi^{-k_{j}}\right) /(1-2 / \xi)<3 \xi^{-k_{j}} \tag{A.3}
\end{equation*}
$$

Figure A.1. Removing the largest ball (light gray) leaves a finite number of chain-connected ball clusters (dark gray), each of which contains a unique ball of maximal radius.
by our requirement that $\xi>6$. By (iii), we conclude that $k_{j} \neq k_{m}$. Thus, $k_{j} \geq k_{m}+1$, because k_{m} was chosen to be the minimum level among k_{1}, \ldots, k_{N+1}. Ergo,

$$
\bigcup \mathscr{U} \subset B\left(x_{j}, \xi^{-1}\left(1+2 \xi^{-1}+4 \xi^{-2}+8 \xi^{-3}+\cdots\right) \xi^{-k_{m}}\right) .
$$

Thus, by (i) and the triangle inequality,

$$
\bigcup \mathscr{U} \subset B\left(x_{m}, r_{m}+2 \xi^{-1}\left(1+2 \xi^{-1}+4 \xi^{-2}+\cdots\right) \xi^{-k_{m}}\right) .
$$

As this conclusion is true for each family \mathscr{U} and trivially true for $\left\{B\left(x_{m}, r_{m}\right)\right\}$, we obtain

$$
\bigcup_{i=1}^{N+1} B\left(x_{i}, r_{i}\right) \subset B\left(x_{m}, r_{m}+2 \xi^{-1}\left(1+2 \xi^{-1}+4 \xi^{-2}+\cdots\right) \xi^{-k_{m}}\right)
$$

Applying (ii) yields A.2 for $n=N+1$. Therefore, by induction, A.2 holds for all integers $1 \leq n \leq I$. Further, reviewing the inductive step, we conclude that M is the unique index such that $k_{M}=\min _{i \geq 1} k_{i}$.

To finish, observe that for any point $z \in \bigcup_{i=1}^{I} B\left(x_{i}, r_{i}\right)$, there exists an index $n \geq M$ such that $z \in \bigcup_{i=1}^{n} B\left(x_{i}, r_{i}\right)$. By A.2), we have

$$
z \in B\left(x_{M},\left(1+\left(2 \xi^{-1}\right) /(1-2 / \xi)\right) \xi^{-k_{M}}\right) .
$$

Because $\xi>6$ and $r_{0}=1$, this yields A.1).

Appendix B. Lipschitz projections onto lines in Banach spaces

We now present a class of 1-Lipschitz projections onto a line in a Banach space. Given a real Banach space \mathbb{X}, let \mathbb{X}^{*} denote the dual of \mathbb{X} and let $J: \mathbb{X} \rightarrow \mathbb{X}^{*}$ denote a normalized duality mapping, i.e. a (nonlinear) map satisfying

$$
\begin{equation*}
|J(x)|_{\mathbb{X}^{*}}=|x| \quad \text { and } \quad\langle J(x), x\rangle=|x|^{2} \quad \text { for all } x \in \mathbb{X} \tag{B.1}
\end{equation*}
$$

where $\langle f, x\rangle \equiv f(x) \in \mathbb{R}$ denotes the natural pairing of $f \in \mathbb{X}^{*}$ and $x \in \mathbb{X}$. Alternatively, J is a subgradient of the convex function $x \in \mathbb{X} \mapsto(1 / 2)|x|^{2}$ (see Asp67, Kie02]). The norm on any (uniformly) smooth Banach space \mathbb{X} is Gateaux (uniformly Fréchet) differentiable, and thus, J is uniquely determined (see e.g. [Die75, Chapter Two]) when \mathbb{X} is smooth.

Example B.1. When $\mathbb{X}=\ell_{p}$ with $1<p<\infty, J(x)=|x|_{\ell_{p}}^{2-p} y \in \ell_{p}^{*}=\ell_{p^{\prime}}$, where $y=\left(\left|x_{1}\right|^{p-2} x_{1},\left|x_{2}\right|^{p-2} x_{2}, \ldots\right)$ and p^{\prime} is the conjugate exponent to p.
Definition B. 2 ([ENV19, Definition 3.31]). Let \mathbb{X} be a Banach space and let L be a one-dimensional linear subspace of \mathbb{X}. Define the J-projection Π_{L} onto L by

$$
\begin{equation*}
\Pi_{L}(x):=\langle J(v), x\rangle v \quad \text { for all } x \in \mathbb{X} \tag{B.2}
\end{equation*}
$$

where J is a normalized dual mapping and v is a point in L with $|v|=1$. When L is a one-dimensional affine subspace of \mathbb{X}, define $\Pi_{L} \equiv p+\Pi_{L-p}(\cdot-p)$ for any choice of $p \in L$.
Example B.3. Let $\mathbb{X}=\ell_{1}^{2}=\left(\mathbb{R}^{2},|\cdot|_{1}\right)$, let $v=(1,0)$, and let $L=\operatorname{span} v$ be the x axis. There is a one-parameter family of J-projections onto L given as follows. For any $|s| \leq 1 / 2$, let $w_{s}=(s, 1-|s|)$. With respect to the basis v, w_{s},

$$
(x, y)=\left(x-\frac{s}{1-|s|} y\right) v+\left(\frac{1}{1-|s|} y\right) w_{s} \quad \text { for all }(x, y) \in \ell_{1}^{2}
$$

For any $|s| \leq 1 / 2$, a J-projection onto L is given by

$$
\Pi_{L}(x, y)=\left(x-\frac{s}{1-|s|} y, 0\right) \quad \text { for all }(x, y) \in \ell_{1}^{2}
$$

Geometrically, the fibers $\Pi_{L}^{-1}(x, 0)$ are lines parallel to span w_{s} and $\Pi_{L}^{-1}(v)=v+\operatorname{span} w_{s}$ is a supporting line for the unit ball in ℓ_{1}^{2}. When $s=0, \Pi_{L}$ is the orthogonal projection onto L. See Figure 3.1 for an illustration.

The following lemma is easily derived from the definition of Π_{L} and (B.1); see BM22, Lemma 2.17] for sample details.

Lemma B.4. Let \mathbb{X} be a Banach space and let L be a line in \mathbb{X}. Every J-projection Π_{L} onto L is a 1-Lipschitz projection, i.e. $\Pi_{L}(x) \in L$ for all $x, \Pi_{L}(x)=x$ if and only if $x \in L$, and $\left|\Pi_{L}(x)-\Pi_{L}(y)\right| \leq|x-y|$ for all x, y. Moreover, $\operatorname{dist}(x, L) \leq\left|x-\Pi_{L}(x)\right| \leq 2 \operatorname{dist}(x, L)$ for every $x \in \mathbb{X}$.

A separated set of points that is sufficiently close to a line admits a canonical ordering (up to choice of orientation) and is locally finite, quantitatively.
Lemma B.5. Let \mathbb{X} be a Banach space. Let $\Pi_{L_{1}}$ and $\Pi_{L_{2}}$ be J-projections onto lines L_{1} and L_{2}, respectively. If $V \subset \mathbb{X}$ is a δ-separated set and there exists $0 \leq \alpha<1 / 6$ such that $\left|v-\Pi_{L_{i}}(v)\right| \leq \alpha \delta$ for all $v \in V$ and $i=1,2$, then there exist compatible identifications of L_{1} and L_{2} with \mathbb{R} such that $\Pi_{L_{1}}\left(v^{\prime}\right) \leq \Pi_{L_{2}}\left(v^{\prime \prime}\right)$ if and only if $\Pi_{L_{2}}\left(v^{\prime}\right) \leq \Pi_{L_{2}}\left(v^{\prime \prime}\right)$ for all $v^{\prime}, v^{\prime \prime} \in V$. Moreover, if $v_{1}, v_{2} \in V$ and $i=1,2$, then

$$
\left|\Pi_{L_{i}}\left(v_{1}\right)-\Pi_{L_{i}}\left(v_{2}\right)\right| \leq\left|v_{1}-v_{2}\right| \leq(1+3 \alpha)\left|\Pi_{L_{i}}\left(v_{1}\right)-\Pi_{L_{i}}\left(v_{2}\right)\right| .
$$

In particular, V is locally finite: $\# V \cap B(x, r \delta) \leq 1+3 r$ for every $x \in \mathbb{X}$ and $r>0$.
Proof. Repeat the proof of [BM22, Lemma 2.1], mutatis mutandis. (See [BM22, Lemma 2.18] for a related result.) The displayed inequality implies $\left.\Pi_{L_{i}}\right|_{V}$ is injective and $\Pi_{L_{i}}(V)$ is a $(2 / 3) \delta$-separated subset of the line L_{i}, whence V is locally finite. To be precise, writing $n \leq \# V \cap B(x, r \delta)$, we have $(2 / 3) \delta(n-1) \leq \operatorname{diam} \Pi_{L}(B(x, r \delta)) \leq 2 r \delta$.

Appendix C. Comments on Lemma 3.28 in [Schul 2007]

In the authors' opinion, the proof of [Sch07c, Lemma 3.28] is incorrect and the mistake made in the proof resists a simple fix. The error is in addition to the gap identified in [BM22, Remark 3.8] and is unrelated to the issue of radial versus diametrical arcs discussed in Remarks 1.15 and 3.5.

To describe the situation, let us quickly recall the basic setup in Sch07c, which is similar to $\S 2$, but with some differences. Given a nested sequence $\left(X_{n}\right)_{n=n_{0}}^{\infty}$ of 2^{-n}-nets for a rectifiable curve Γ in a Hilbert space H, let $\hat{\mathscr{G}}=\left\{B\left(x, A_{\mathscr{G}}\right): x \in X_{n}, n \geq n_{0}\right\}$ denote the corresponding (truncated) multiresolution family for Γ. Let \mathscr{G} denote the set of all $Q \in \hat{\mathscr{G}}$ such that $4 Q \backslash \Gamma \neq \emptyset$. Choose a Lipschitz continuous parameterization $f:[0,1] \rightarrow \Gamma$ such that $f(0)=f(1)$ and $\# f^{-1}(\{x\}) \leq 2$ for \mathcal{H}^{1}-a.e. $x \in \Gamma$. For any ball $Q \in \mathscr{G}$, define $\Lambda(Q)$ to be the set of $\operatorname{arcs} \tau=\left.f\right|_{[a, b]}$ such that $[a, b]$ is a maximal connected component of $f^{-1}(\Gamma \cap Q)$. For each arc τ, define the arc beta number $\tilde{\beta}(\tau)$ by 1.11). Fix parameters $0<\epsilon_{1}, \epsilon_{2}<_{A_{\mathscr{G}}} 1$. We say that τ is almost flat and write $\tau \in S(Q)$ if $\tilde{\beta}(\tau)<\epsilon_{2} \beta_{\Gamma}(Q)$. Fix an integer $J \gg \log _{2} A_{\mathscr{G}}$ and for each $Q \in \mathscr{G}$, define cores

$$
U_{Q}:=U_{Q}^{J, 1 / 64} \quad \text { and } \quad U_{Q}^{x}:=U_{Q}^{J, 1 / 8}
$$

using Definition 2.1 above with \mathscr{G} in place of \mathscr{H}. For each $Q \in \mathscr{G}$ and $\lambda \in\{1,2,4\}$ such that $\lambda Q \in \mathscr{G}$, choose an arc $\gamma_{\lambda Q} \in \Lambda(\lambda Q)$ containing the center of Q. Do this in such a way that $\gamma_{2 Q}$ extends γ_{Q} and $\gamma_{4 Q}$ extends $\gamma_{2 Q}$ whenever the arcs are defined. For each $\lambda \in\{1,2,4\}$, introduce the family

$$
\mathscr{G}_{2}^{\lambda}:=\left\{Q \in \mathscr{G}: \gamma_{\lambda Q} \in S(\lambda Q) \text { and } \beta_{S(\lambda Q)}>\epsilon_{1} \beta_{\Gamma}(Q)\right\} .
$$

(Schul's $\mathscr{G}_{2}^{\lambda}$ balls correspond to this paper's \mathscr{B}^{λ} balls. Schul also defines $\mathscr{G}_{1}^{\lambda}$ and $\mathscr{G}_{3}^{\lambda}$ balls, but these are unrelated to Lemma 3.28.) Continuing to follow [Sch07c], let us focus on the case $\lambda=1$. Choose a parameter $C_{U} \gg_{A_{\mathscr{G}}} 1$ and define $\Delta_{2.1}$ to be the subfamily of all balls $Q \in \mathscr{G}_{2}^{1}$ such that

- almost flat arcs are flatter in U_{Q}^{x} than in $Q: \beta_{S(Q)}\left(U_{Q}^{x}\right) \leq C_{U}^{-1} \beta_{S(Q)}(Q)$; and,
- every arc $\tau \in \Lambda(Q)$ such that Image $(\tau) \cap U_{Q} \neq \emptyset$ is almost flat: $\tau \in S(Q)$.
(There are also subfamilies Δ_{1} and $\Delta_{2.2}$, which are not relevant here.)
Lemma C. 1 (Sch07c, Lemma 3.28]). For every integer $0 \leq j \leq J-1$, the family $\Delta^{\prime}=\left\{Q \in \Delta_{2.1}\right.$: radius $Q=A_{\mathscr{G}} 2^{-k}$ for some $\left.k \equiv j(\bmod J)\right\}$ satisfies

$$
\sum_{Q \in \Delta^{\prime}} \operatorname{diam} Q \lesssim_{A_{\mathscr{G}}} \mathcal{H}^{1}(\Gamma)
$$

Schul's strategy for proving Lemma C. 1 is the one that we described in $\$ 2$. It suffices to construct Borel functions $w_{Q}: H \rightarrow[0, \infty]$ for each $Q \in \Delta^{\prime}$, which satisfy the inequalities (2.4) and (2.5) with Δ^{\prime} in place of \mathscr{G}. Build weights w_{Q} using the cores U_{Q} as in $\$ 2.3$ with $\operatorname{diam} U_{Q}$ in place of diam H_{Q}. (The concept of maximal arc fragments H_{Q} introduced in Remark 2.11 did not appear in Sch07c, but in any event $\operatorname{diam} H_{Q} \geq \operatorname{diam} \gamma_{Q} \approx \operatorname{diam} U_{Q}$ because γ_{Q} is diametrical for all $Q \in \Delta_{2.1}$.) Define the remainder set R_{Q} as in (2.14) and

Figure C.1. Example of an almost flat arc $\tau \in S(Q)$ inside of the core U_{Q} of a Schul-type $\Delta_{2.1}$ ball Q. At the resolution of Q or U_{Q}, the portion of Image (τ) inside of U_{Q} is indistinguishable from a line segment. However, zooming in reveals a more complicated picture. The portion of Image (τ) inside of the sub-ball $Q^{\prime} \in \Delta_{2.1}$ is the union of two line segments, only one of which intersects the core $U_{Q^{\prime}}$. The orthogonal projection π from $\Gamma \cap U_{Q}$ onto the horizontal line through the center of Q^{\prime} is 1-to-1 when restricted to the cylinder above points in $\pi\left(\Gamma \cap U_{Q^{\prime}}\right)$. This shows that [Sch07c, (3.24)] used in the proof of Lemma 3.28 is invalid.
define an auxiliary quantity $s_{Q}=2 \ell\left(R_{Q}\right)+\sum_{Q^{\prime} \in \operatorname{Cnild}(Q)} \operatorname{diam} U_{Q^{\prime}}$. By the argument in [Sch07c, Lemma 3.25, Steps 2-3] or Lemma 2.12 above, the weights $\left\{w_{Q}: Q \in \Delta^{\prime}\right\}$ satisfy (2.4) and (2.5) so long as there exists a universal constant $0<q<1$ such that

$$
\begin{equation*}
\operatorname{diam} U_{Q} \leq q s_{Q} \quad \text { for all } Q \in \Delta^{\prime} \tag{C.1}
\end{equation*}
$$

Unfortunately, the proof of (C.1) in Sch07c contains an error and is incomplete.
Fix $Q=B\left(x_{Q}, A_{\mathscr{C}} 2^{-k}\right) \in \Delta^{\prime}$. Simplifying the notation from Sch07c slightly, write $Q_{*}=B\left(x_{Q},(1 / 64) 2^{-k}\right)$. As long as we choose J to be sufficiently large, we have

$$
Q_{*} \subset U_{Q} \subset 1.00001 Q_{*}
$$

Suppose that the central arc $\gamma_{Q}=\left.f\right|_{[a, b]}$. Choose an interval $[c, d] \subset[a, b]$ such that $[c, d]$ is a connected component of $\gamma_{Q}^{-1}\left(0.99999 Q_{*}\right)$ and $f([c, d])$ has maximal diameter among all such intervals. (This is like extracting G_{Q} from H_{Q}.) Define $\eta_{Q}=\left.f\right|_{[c, d]}$ and let L denote the line passing through $\operatorname{Edge}\left(\eta_{Q}\right)=[f(c), f(d)]$. Because γ_{Q} is almost flat, $\operatorname{dist}(z, L) \lesssim_{A_{G}} \epsilon_{2} \operatorname{diam} Q_{*}$ for every $z \in \operatorname{Image}\left(\eta_{Q}\right)$. Finally, let π denote the orthogonal projection from $\Gamma \cap 0.99999 Q_{*}$ onto L. The first error in the proof is in [Sch07c, (3.24)], which states that for all $x \in \pi\left(\Gamma \cap 0.99999 Q_{*}\right) \backslash \pi\left(R_{Q}\right)$, there are at least two points in $\Gamma \cap 0.99999 Q_{*}$ that project onto x. In Figure C.1, we show that this is not the case.

A second (implicit) error appears in the preamble to the proof just before Sch07c, Remark 3.27]. Let $Q^{\prime} \in \operatorname{Child}(Q)$; in addition to the central arc $\gamma_{Q^{\prime}}$, the set $S\left(Q^{\prime}\right)$ includes at least one other arc $\tau_{Q^{\prime}}$ with a distinct image. (In the figure, $\gamma_{Q^{\prime}}$ traces the horizontal line segment and $\tau_{Q^{\prime}}$ traces the diagonal line segment.) Let $\widehat{\gamma_{Q^{\prime}}}$ and $\widehat{\tau_{Q^{\prime}}}$ denote the extensions of the arcs to elements in $\Lambda(Q)$. It is implicitly suggested that the arcs $\widehat{\gamma_{Q^{\prime}}}$ and $\widehat{\tau_{Q^{\prime}}}$ are distinct and this together with [Sch07c, (3.24)] is what let's one check
(C.1). The example in the figure shows that it is possible for Image $\left(\widehat{\gamma_{Q^{\prime}}}\right)=$ Image $\left(\widehat{\tau_{Q^{\prime}}}\right)$ even though Image $\left(\gamma_{Q^{\prime}}\right) \neq \operatorname{Image}\left(\tau_{Q^{\prime}}\right)$. Ultimately, the proof of (C.1) offered in [Sch07c] is incomplete and unconvincing.

Nevertheless, (C.1) and Sch07c, Lemma 3.28] are correct and this can be shown using the arguments in $\S \S 3-7$. The essential new ingredients that let us wrap up Schul's proof of the Analyst's Traveling Salesman theorem in Hilbert space (Corollary 1.5) are the classification of cores in Definition 3.8, the case analysis in §3, Lemma I, and Lemma II.

References

[AO17] Giovanni Alberti and Martino Ottolini, On the structure of continua with finite length and Golab's semicontinuity theorem, Nonlinear Anal. 153 (2017), 35-55. MR 3614660
[AS14] Jonas Azzam and Raanan Schul, A quantitative metric differentiation theorem, Proc. Amer. Math. Soc. 142 (2014), no. 4, 1351-1357. MR 3162255
[AS18] Jonas Azzam and Raanan Schul, An analyst's traveling salesman theorem for sets of dimension larger than one, Math. Ann. 370 (2018), no. 3-4, 1389-1476. MR 3770170
[Asp67] Edgar Asplund, Positivity of duality mappings, Bull. Amer. Math. Soc. 73 (1967), 200-203. MR 206663
[Bad19] Matthew Badger, Generalized rectifiability of measures and the identification problem, Complex Anal. Synerg. 5 (2019), no. 1, 5:2. MR 3941625
[Bis22] Christopher J. Bishop, The traveling salesman theorem for Jordan curves, Adv. Math. 404 (2022), Paper No. 108443. MR 4420442
[BLZ22] Matthew Badger, Sean Li, and Scott Zimmerman, Identifying 1-rectifiable measures in Carnot groups, preprint, arXiv:2109.06753v2, 2022.
[BM22] Matthew Badger and Sean McCurdy, Subsets of rectifiable curves in Banach spaces I: sharp exponents in traveling salesman theorems, preprint, arXiv:2002.11878v3, 2022.
[BNV19] Matthew Badger, Lisa Naples, and Vyron Vellis, Hölder curves and parameterizations in the Analyst's Traveling Salesman theorem, Adv. Math. 349 (2019), 564-647. MR 3941391
[BS17] Matthew Badger and Raanan Schul, Multiscale Analysis of 1-rectifiable Measures II: Characterizations, Anal. Geom. Metr. Spaces 5 (2017), 1-39. MR 3627148
[Die75] Joseph Diestel, Geometry of Banach spaces-selected topics, Lecture Notes in Mathematics, Vol. 485, Springer-Verlag, Berlin-New York, 1975. MR 0461094
[DS17] Guy C. David and Raanan Schul, The analyst's traveling salesman theorem in graph inverse limits, Ann. Acad. Sci. Fenn. Math. 42 (2017), no. 2, 649-692. MR 3701642
[DS21] Guy C. David and Raanan Schul, A sharp necessary condition for rectifiable curves in metric spaces, Rev. Mat. Iberoam. 37 (2021), no. 3, 1007-1044. MR 4236801
[Dur19] Rick Durrett, Probability - theory and examples, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 49, Cambridge University Press, Cambridge, 2019, Fifth edition of [MR1068527]. MR 3930614
[ENV19] Nick Edelen, Aaron Naber, and Daniele Valtorta, Effective Reifenberg theorems in Hilbert and Banach spaces, Math. Ann. 374 (2019), no. 3-4, 1139-1218. MR 3985109
[Hah05] Immo Hahlomaa, Menger curvature and Lipschitz parametrizations in metric spaces, Fund. Math. 185 (2005), no. 2, 143-169. MR 2163108
[Hah08] Immo Hahlomaa, Menger curvature and rectifiability in metric spaces, Adv. Math. 219 (2008), no. 6, 1894-1915. MR 2456269
[Hyd22] Matthew Hyde, The restricted content and the d-dimensional Analyst's Travelling Salesman Theorem for general sets, Adv. Math. 397 (2022), Paper No. 108189. MR 4366226
[Jon90] Peter W. Jones, Rectifiable sets and the traveling salesman problem, Invent. Math. 102 (1990), no. 1, 1-15. MR 1069238 (91i:26016)
[Kie02] Bui Trong Kien, The normalized duality mapping and two related characteristic properties of a uniformly convex Banach space, Acta Math. Vietnam. 27 (2002), no. 1, 53-67. MR 1914408
[Kra22] Jared Krandel, The traveling salesman theorem for Jordan curves in Hilbert Spaces, preprint, arXiv:2107.07017v2, 2022.
[KRS12] Antti Käenmäki, Tapio Rajala, and Ville Suomala, Existence of doubling measures via generalised nested cubes, Proc. Amer. Math. Soc. 140 (2012), no. 9, 3275-3281. MR 2917099
[Li22] Sean Li, Stratified β-numbers and traveling salesman in Carnot groups, J. London Math. Soc. (2022), doi:10.1112/jlms.12582, arXiv:1902.03268v2.
[Oki92] Kate Okikiolu, Characterization of subsets of rectifiable curves in \mathbf{R}^{n}, J. London Math. Soc. (2) 46 (1992), no. 2, 336-348. MR 1182488 (93m:28008)
[Sch07a] Raanan Schul, Ahlfors-regular curves in metric spaces, Ann. Acad. Sci. Fenn. Math. 32 (2007), no. 2, 437-460. MR 2337487 (2008j:28005)
[Sch07b] Raanan Schul, Analyst's traveling salesman theorems. A survey, In the tradition of AhlforsBers. IV, Contemp. Math., vol. 432, Amer. Math. Soc., Providence, RI, 2007, pp. 209-220. MR 2342818
[Sch07c] Raanan Schul, Subsets of rectifiable curves in Hilbert space-the analyst's TSP, J. Anal. Math. 103 (2007), 331-375. MR 2373273 (2008m:49205)
[Vil20] Michelle Villa, Higher dimensional Jordan curves, preprint, arXiv:1908.10289v2, 2020.
Department of Mathematics, University of Connecticut, Storrs, CT 06269-1009
Email address: matthew.badger@uconn.edu
Department of Mathematics, National Taiwan Normal University, Taipei City, Taiwan (R. O. C.)

Email address: smccurdy@ntnu.edu.tw

[^0]: ${ }^{1}$ At scales much smaller than $2 \lambda Q$, almost flat and $*$-almost flat arcs can look like any rectifiable curve.

[^1]: ${ }^{2}$ If \mathbb{X} is not separable, pass to a separable subspace of \mathbb{X} containing the rectifiable curve Γ before defining J_{0} to ensure the projection $\Pi_{T}\left(R_{Q}\right)$ is universally measurable.

